Hostname: page-component-6bf8c574d5-rwnhh Total loading time: 0 Render date: 2025-02-14T19:19:15.229Z Has data issue: false hasContentIssue false

79Se: Geochemical and Crystallo-Chemical Retardation Mechanisms

Published online by Cambridge University Press:  10 February 2011

Fanrong Chen
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, Ann Arbor, MI 48109–2104
Peter C. Burns
Affiliation:
Department of Civil Engineering and Geological Sciences University of Notre Dame, Notre Dame, IN 46556
Rodney C. Ewing
Affiliation:
Department of Civil Engineering and Geological Sciences University of Notre Dame, Notre Dame, IN 46556
Get access

Abstract

79Se is a long-lived (1.1×106 years) fission product which is chemically and radiologically toxic. Under Eh-pH conditions typical of oxidative alteration of spent nuclear fuel, selenite or selenate are the dominant aqueous species of selenium. Because of the high solubility of metalselenites and metal-selenates and the low adsorption of selenite and selenate aqueous species under alkaline conditions, selenium may be highly mobile. However, 79Se released from altered fuel may be immobilized by incorporation into secondary uranyl phases as low concentration impurities, and this may significantly reduce the mobility of selenium. Analysis and comparison of the known structures of uranyl phases indicate that (SeO3) may substitute for (SiO3OH) in structures with the uranophane anion-topology (α.-uranophane, sklodowskite, boltwoodite) which are expected to be the dominant alteration phases of UO2 in Si-rich groundwater. The structural similarity of guillemninite, Ba[(UO2)3 (SeO3)2O2](H2O) 3 to phurcalite, [(UO2)3(PO4)2O2](H2O)7, suggests that the substitution (SeO3)↔ (PO4) may occur in phurcalite. The close similarity between the sheets in the structures of rutherfordine and [(UO2)(SeO3)] implies that the substitution (SeO3) ↔ (CO3) can occur in rutherfordine. However, the substitutions: (SeO3) ↔ (SiO3OH) in soddyite and (SeO3) ↔ (PO4) in phosphuranylite may disrupt their structural connectivity and are unlikely to occur.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Melnyk, T.W., McMurry, J., Sargent, F.P., Proceedings of the 1994 American Nuclear Society International High-Level Radioactive Waste Management Conference, Las Vegas, Nevada, Vol.3 (1994) p. 1222.Google Scholar
2. Civilian Radioactive Waste Management System Management & Operating Contractor, Total System Performance Assessment - 1995: An Evaluation of the Potential Yucca Mountain Repository prepared by TRW Environmental Safety Systems, Inc. (1995)Google Scholar
3. Kessler, J.H. and others, Biosphere Modeling and Dose Assessment for Yucca Mountain. Final Report TR - 107190 3294-18 Electric Power Research Institute prepared by QuantiSci, Inc. (1996).Google Scholar
4. Jiang, S., Duo, J., Jiang, Sh., Li, C., Cui, A., He, M., Wu, S., Li, S., Nucl. Instruments and Methods in Phys. Res. B123, 405 (1997).Google Scholar
5. Forsyth, R.S., Werme, L.O., J. Nucl. Mater. 190, 3 (1992).Google Scholar
6. Johnson, L.H., Werme, L.O., Materials Research Society Bulletin, 24 (1994).Google Scholar
7. Wronkiewicz, D.J., Bates, J.K., Gerding, T.J., Veleckis, E., J. Nucl. Mater. 190, 107 (1992).Google Scholar
8. Wronkiewicz, D.J., Bates, J.K., Wolf, S.F. and Buck, E.C., J. Nucl. Mater. 238, 78 (1996).Google Scholar
9. Finn, P.A., Hoh, J.C., Wolf, S.F., Slater, S.A., Bates, J.K., Radiochim. Acta, 74, 65 (1996). 1121Google Scholar
10. Buck, E.C., Finch, R.J., Finn, P.A., Bates, J.K., Mater. Res. Soc. Symp. Proc. 506, 87 (1998).Google Scholar
11. Burns, P.C., Ewing, R.C., Miller, M.L., J. Nucl. Mater. 245, 1 (1997).Google Scholar
12. Sunder, S., Shoesmith, D.W., Bailey, M.G., Stanchell, F.W., Mcintyre, N.S., J. Electroanalyt. Chem. 130, 163 (1981).Google Scholar
13. Shoesmith, D.W., Sunder, S., J. Nucl. Mater. 190, 20 (1992).Google Scholar
14. Finch, R.J., Ewing, R.C., J. Nucl. Mater. 190, 133 (1992).Google Scholar
15. Langmuir, D., Geochim. Cosmochim. Acta 42, 547 (1978).Google Scholar
16. Pearcy, E.C., Prikryl, J.D., Murphy, W.M., Leslie, B.W., Appl. Geochem. 9, 713 (1994).Google Scholar
17. Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., and Wanner, H., Chemical thermodynamics of uranium. North-Holland, 1992, 713p.Google Scholar
18. Chen, F., Ewing, R.C., and Clark, S.B., The Gibbs free energies and enthalpies of formation of U6+ phases: An empirical method of prediction. Am. Mineral. 84, in press (1999).Google Scholar
19. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., and Buttall, R.L., J. Phys. Chem, Ref. Data 11, Suppl. 2, 392 (1982).Google Scholar
20. Elrashidi, M.A., Adriano, D.C., Workman, S.M., Lindsay, W.L., Soil Sci. 144, 141 (1987).Google Scholar
21. Essington, M.E., Soil Sci. Soc. Am. J. 52, 1574 (1988).Google Scholar
22. Sharmasarkar, S., Reddy, K.J., Vance, G.F., Chem. Geol. 132, 165 (1996).Google Scholar
23. Deverel, S.J., Gilliom, R.J., Fugii, R., Izbicki, J.A., Fields, J.C., U.S. Geol. Surv. Report 84-4319 (1984).Google Scholar
24. Bar-Yosef, B., Meek, D., Soil Sci. 144, 11 (1987).Google Scholar
25. Blaylock, M.J., Tawfic, T.A., Vance, G.F., Soil Sci. 159, 43 (1995).Google Scholar
26. Neal, H.H., Sposito, G., Holtzclaw, K.M., Traina, S.J., Soil Sci. Soc. Am. J. 51, 1161 (1987).Google Scholar
27. Neal, R.H., Sposito, G., Holtzclaw, K.M., Traina, S.J., Soil Sci. Soc. Am. J. 51, 1165 (1987).Google Scholar
28. Goldberg, S., Soil Sci. Soc. Am. J., 49, 851 (1985).Google Scholar
29. Masscheleyn, P.H., Delaune, R.D., Patrick, W.H. Jr., J. Environ. Quality, 20, 522 (1991).Google Scholar
30. Bums, P.C., Ewing, R.C., Hawthorne, F.C., Can. Mineral. 35, 1551 (1997).Google Scholar
31. Burns, P.C., Miller, M.L., Ewing, R.C., Can. Mineral. 34, 845 (1996).Google Scholar
32. Shannon, R.D., Acta Crystallogr. A32, 751 (1976).Google Scholar
33. Loopstra, B.O., Brandenberg, N.P., Acta Crystallogr. B34, 1335 (1978).Google Scholar
34. Mistryukov, V.E., Michailov, Y.N., Coord. Chem. (USSR) 9, 97 (1983) (in Russian).Google Scholar
35. Cooper, M.A., Hawthorne, F.C., Can. Mineral. 33, 1103 (1995).Google Scholar
36. Ginderow, D., Cesbron, F., , F., Acta Crystallogr. C39, 824 (1983).Google Scholar
37. Ginderow, D., Cesbron, F., , F., Acta Crystallogr. C39, 1605 (1983).Google Scholar
38. Vochten, R., Blaton, N., Peeters, O., Deliens, M., Can. Mineral. 34, 1317 (1996).Google Scholar
39. Christ, C.L., Clark, J.R., Evans, H.T. Jr., Science 121, 472 (1955).Google Scholar
40. Serezhkin, V.N., Soldakina, M.A., Efremov, V.A., Zhurnal Strukturnoi Khimii 22, 171 (1981).Google Scholar
41. Blatov, V.A., Serezhkina, L.B.,Serzhkin, V.N., Trunov, V.K., Russian J. Inorg. Chem. 34, 91 (1989).Google Scholar
42. Frondel, C., Systematic Mineralogy of Uranium and Thorium. U.S. Geological Survey Bulletin 1064, Washington, DC, U.S. Government Printing Office (1958).Google Scholar
43. Wilson, C.N., Results from NNWSI Series 3 Spent Fuel Dissolution Tests, Pacific Northwest Laboratory Report PNL-7170, Richland (1990).Google Scholar
44. Ginderow, D., Acta Crystallogr. C44, 421 (1988) 421.Google Scholar
45. Ryan, R.R., Rosenzweig, A., Crystal Structure Communication 6, 611 (1977).Google Scholar
46. Burns, P.C., The structure of boltwoodite and implication of solid solution towards boltwoodite, Can. Mineral. (1998) (accepted).Google Scholar
47. Demartin, F., Gramaccioli, C.M., Pilati, T., Acta Crystallograph. C48, 1 (1992).Google Scholar
48. Attencio, D., Neumann, R., Silva, A.J.G.C., Mascarenhas, Y.P., Can. Mineral. 29, 95 (1991).Google Scholar
49. Demartin, F., Diella, V., Donzelli, S., Gramaccioli, C.M., Pilati, T., Acta Crystallogr. B47, 439 (1991).Google Scholar
50. Hawthorne, F.C., Kristallogr., Z. 201, 183 (1992).Google Scholar