Given a finite-dimensional Banach space
$X$ and an Auerbach basis
$\{(x_{k},x_{k}^{\ast }):1\leqslant k\leqslant n\}$ of
$X$, it is proved that there exist
$n+1$ linear combinations
$z_{1},\ldots ,z_{n+1}$ of
$x_{1},\ldots ,x_{n}$ with coordinates
$0,\pm 1$, such that
$\Vert z_{k}\Vert =1$, for
$k=1$,
$2,\ldots ,n+1$ and
$\Vert z_{k}-z_{l}\Vert >1$, for
$1\leqslant k<l\leqslant n+1$.