In this paper we shall be concerned with the following problem. Let k1 ≤ k2 ≤…≤ ks be natural numbers, λ1,…, λs be nonzero real numbers, not all of the same sign. Is it then true that the values taken by
![](//static-cambridge-org.ezproxyberklee.flo.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0025579300013371/resource/name/S0025579300013371_eqnU1.gif?pub-status=live)
at integer points (x1,…, xs) ∈ ℤk are dense on the real line, provided at least one of the ratios λi/λj, is irrational? We shall refer to this, for brevity, as the inequality problem for k1,…, ks. Optimistically one may conjecture that the inequality problem is true whenever
![](//static-cambridge-org.ezproxyberklee.flo.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0025579300013371/resource/name/S0025579300013371_eqnU2.gif?pub-status=live)