Published online by Cambridge University Press: 03 April 2018
For the superelliptic curves of the form $$\begin{eqnarray}(x+1)\cdots (x+i-1)(x+i+1)\cdots (x+k)=y^{\ell }\end{eqnarray}$$
$y\neq 0$,
$k\geqslant 3$,
$\ell \geqslant 2,$ a prime and for
$i\in [2,k]\setminus \unicode[STIX]{x1D6FA}$, we show that
$\ell <\text{e}^{3^{k}}.$ Here
$\unicode[STIX]{x1D6FA}$ denotes the interval
$[p_{\unicode[STIX]{x1D703}},(k-p_{\unicode[STIX]{x1D703}}))$, where
$p_{\unicode[STIX]{x1D703}}$ is the least prime greater than or equal to
$k/2$. Bennett and Siksek obtained a similar bound for
$i=1$ in a recent paper.