Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-07T01:00:26.286Z Has data issue: false hasContentIssue false

On weighted inhomogeneous Diophantine approximation on planar curves

Published online by Cambridge University Press:  01 October 2012

MUMTAZ HUSSAIN
Affiliation:
Department of Mathematics and Statistics, La Trobe University, Melbourne, 3086, Victoria, Australia. e-mail: m.hussain@latrobe.edu.au
TATIANA YUSUPOVA
Affiliation:
Department of Mathematics, University of York, Heslington, York, YO10, 5DD. e-mail: tatiana.yusupova@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper develops the metric theory of simultaneous inhomogeneous Diophantine approximation on a planar curve with respect to multiple approximating functions. Our results naturally generalize the homogeneous Lebesgue measure and Hausdorff dimension results for the sets of simultaneously well-approximable points on planar curves, established in Badziahin and Levesley (Glasg. Math. J., 49(2):367–375, 2007), Beresnevich et al. (Ann. of Math. (2), 166(2):367–426, 2007), Beresnevich and Velani (Math. Ann., 337(4):769–796, 2007) and Vaughan and Velani (Invent. Math., 166(1):103–124, 2006).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2012

References

REFERENCES

[1]Badziahin, D., Beresnevich, V., and Velani, S. Inhomogeneous theory of dual Diophantine approximation on manifolds. Pre-print arXiv:1009.5638v1.Google Scholar
[2]Badziahin, D. and Levesley, J.A note on simultaneous and multiplicative Diophantine approximation on planar curves. Glasg. Math. J. 49 (2) (2007), 367375.CrossRefGoogle Scholar
[3]Baker, A. and Schmidt, W. M.Diophantine approximation and Hausdorff dimension. Proc. London Math. Soc. (3) 21 (1970), 111.CrossRefGoogle Scholar
[4]Beresnevich, V.A Groshev type theorem for convergence on manifolds. Acta Math. Hungar. 94 (1–2) (2002), 99130.CrossRefGoogle Scholar
[5]Beresnevich, V., Dickinson, D. and Velani, S.Measure theoretic laws for lim sup sets. Mem. Amer. Math. Soc. 179 (846) (2006), x+91.Google Scholar
[6]Beresnevich, V., Dickinson, D. and Velani, S.Diophantine approximation on planar curves and the distribution of rational points. Ann. of Math. (2), 166 (2) (2007), 367426. With an Appendix II by R. C. Vaughan.CrossRefGoogle Scholar
[7]Beresnevich, V. and Velani, S. A note on metric simultaneous Diophantine approximation. In preparation.Google Scholar
[8]Beresnevich, V. and Zorin, E.Explicit bounds for rational points near planar curves and metric Diophantine approximation. Adv. Math. 225 (6) (2010), 30643087.CrossRefGoogle Scholar
[9]Beresnevich, V. V., Vaughan, R. C. and Velani, S. L.Inhomogeneous Diophantine approximation on planar curves. Math. Ann. 349 (4) (2011), 929942.CrossRefGoogle Scholar
[10]Beresnevich, V. V. and Velani, S. L.A note on simultaneous Diophantine approximation on planar curves. Math. Ann. 337 (4) (2007), 769796.CrossRefGoogle Scholar
[11]Bernik, V. I. and Dodson, M. M.Metric Diophantine approximation on manifolds. Cambridge Tracts in Mathematics vol. 137 (Cambridge University Press, Cambridge, 1999).Google Scholar
[12]Cassels, J. W. S.An introduction to Diophantine approximation. Cambridge Tracts in Mathematics and Mathematical Physics, No. 45 (Cambridge University Press, New York, 1957).Google Scholar
[13]Dodson, M. M., Rynne, B. P. and Vickers, J. A. G.Diophantine approximation and a lower bound for Hausdorff dimension. Mathematika 37 (1) (1990), 5973.CrossRefGoogle Scholar
[14]Falconer, K.Fractal Geometry: Mathematical Foundations and Applications. (John Wiley & Sons Ltd., Chichester, 1990).Google Scholar
[15]Gallagher, P. X.Metric simultaneous diophantine approximation. II. Mathematika 12 (1965), 123127.CrossRefGoogle Scholar
[16]Hussain, M. and Yusupova, T. Multiplicative inhomogeneous Diophantine approximation on planar curves. In preparation.Google Scholar
[17]Jarník, V.Über die simultanen diophantischen approximationen. Math. Z. 33 (1931), 505543.CrossRefGoogle Scholar
[18]Khintchine, A.Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92 (1-2) (1924), 115125.CrossRefGoogle Scholar
[19]Kleinbock, D. Y. and Margulis, G. A.Flows on homogeneous spaces and Diophantine approximation on manifolds. Ann. of Math. (2) 148 (1) (1998), 339360.CrossRefGoogle Scholar
[20]Vaughan, R. C. and Velani, S.Diophantine approximation on planar curves: the convergence theory. Invent. Math. 166 (1) (2006), 103124.CrossRefGoogle Scholar