Article contents
Moduli of wild Higgs bundles on
$\mathbb{C}P^1$ with
$\mathbb{C}^\times$-actions
Published online by Cambridge University Press: 03 June 2021
Abstract
We study a set $\mathcal{M}_{K,N}$ parameterising filtered SL(K)-Higgs bundles over
$\mathbb{C}P^1$ with an irregular singularity at
$z = \infty$, such that the eigenvalues of the Higgs field grow like
$\vert \lambda \vert \sim \vert z^{N/K} \mathrm{d}z \vert$, where K and N are coprime.
$\mathcal{M}_{K,N}$ carries a
$\mathbb{C}^\times$-action analogous to the famous
$\mathbb{C}^\times$-action introduced by Hitchin on the moduli spaces of Higgs bundles over compact curves. The construction of this
$\mathbb{C}^\times$-action on
$\mathcal{M}_{K,N}$ involves the rotation automorphism of the base
$\mathbb{C}P^1$. We classify the fixed points of this
$\mathbb{C}^\times$-action, and exhibit a curious 1-1 correspondence between these fixed points and certain representations of the vertex algebra
$\mathcal{W}_K$
; in particular we have the relation
$\mu = {k-1-c_{\mathrm{eff}}}/{12}$
, where
$\mu$
is a regulated version of the L2 norm of the Higgs field, and
$c_{\mathrm{eff}}$
is the effective Virasoro central charge of the corresponding W-algebra representation. We also discuss a Białynicki–Birula-type decomposition of
$\mathcal{M}_{K,N}$
, where the strata are labeled by isomorphism classes of the underlying filtered vector bundles.
MSC classification
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 171 , Issue 3 , November 2021 , pp. 623 - 656
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of Cambridge Philosophical Society
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211015041825283-0601:S0305004121000074:S0305004121000074_inline19.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211015041825283-0601:S0305004121000074:S0305004121000074_inline20.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211015041825283-0601:S0305004121000074:S0305004121000074_inline21.png?pub-status=live)
- 1
- Cited by