Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-07T01:08:16.959Z Has data issue: false hasContentIssue false

Bases of quasi-hereditary covers of diagram algebras

Published online by Cambridge University Press:  11 February 2013

C. BOWMAN*
Affiliation:
Institut de Mathématiques de Jussieu, 175 rue du Chevaleret, 75013, Paris. e-mail: bowman@math.jussieu.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We extend the the combinatorics of tableaux to the study of Brauer walled Brauer and partition algebras. In particular, we provide uniform constructions of Murphy bases and ‘Specht’ filtrations of permutation modules. This allows us to give a uniform construction of semistandard bases of their quasi-hereditary covers.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2013

References

REFERENCES

[1]Cline, E., Parshall, B. and Scott, L.Stratifying endomorphism algebras. Memoir Amer. Math. Soc. 124 (1996).CrossRefGoogle Scholar
[2]Cox, A., De Visscher, M., Doty, S. R. and Martin, P.On the blocks of the walled Brauer algebra. J. Algebra 320 (2008), 169212.CrossRefGoogle Scholar
[3]Dipper, R. and James, G. D.Representations of Hecke algebras of general linear groups. Proc. London Math. Soc. 52 (1986), no. 3, 2052.CrossRefGoogle Scholar
[4]Dipper, R., James, G. and Mathas, A.Cyclotomic q-Schur algebras. Math. Z. 229 (1998), no. 3, 385416.CrossRefGoogle Scholar
[5]Diracca, L. and König, S.Cohomological reduction by split pairs. J. Pure Appl. Algebra 212 (2008), no. 3, 471485.CrossRefGoogle Scholar
[6]Donkin, S. and Tange, R.The Brauer algebra and the symplectic Schur algebra. Math. Z. 265 (2010), 187219.CrossRefGoogle Scholar
[7]Graham, J. J. and Lehrer, G. I.Cellular algebras. Invent. Math. 123 (1996), 134.CrossRefGoogle Scholar
[8]Green, J. A.Polynomial Representations of GLn vol. 830. (Springer–Verlag, Berlin 1980).Google Scholar
[9]Hartmann, R., Henke, A., König, S. and Paget, R.Cohomological stratification of diagram algebras. Math. Ann. 347 (2010), 765804.CrossRefGoogle Scholar
[10]Hartmann, R. and Paget, R.Young modules and filtration multiplicities for Brauer algebras. Math. Z. 254 (2006), no. 2, 333357.CrossRefGoogle Scholar
[11]Hemmer, D. J. and Nakano, D. K.Specht filtration for Hecke algebras of type A. J. London Math. Soc. 69 (2004), no. 3, 623638.CrossRefGoogle Scholar
[12]Henke, A. and König, S.Schur algebras of Brauer algebras I. Math. Z. (2011), DOI: 10.1007/s00209-011-0956-xGoogle Scholar
[13]König, S. and Xi, C.Cellular algebras: inflations and Morita equivalences. J. London Math. Soc. 60 (1999), 700722.CrossRefGoogle Scholar
[14]Murphy, G. E.On the representation theory of the symmetric groups and associated Hecke algebras. J. Algebra 152 (1992), 492513.CrossRefGoogle Scholar
[15]Ram, A.Characters of Brauer's centralizer algebras. Pacific J. Math. 169 (1995), no. 1, 173200.CrossRefGoogle Scholar
[16]Rouquier, R.q-Schur algebras and complex reflection groups. Mosc. Math. J. 8 (2008), no. 1, 119158.CrossRefGoogle Scholar