Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-11T23:20:29.926Z Has data issue: false hasContentIssue false

Fibonacci Fraction Circles

Published online by Cambridge University Press:  24 February 2022

Howard Sporn*
Affiliation:
Department of Mathematics and Computer Science, Queensborough Community College, Bayside, NY, 11364USA e-mail: hsporn@qcc.cuny.edu
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We define a Fibonacci fraction circle to be a circle passing through an infinite number of points whose coordinates are of the form $\left( {{{{F_k}} \over {{F_m}}},{{{F_n}} \over {{F_m}}}} \right)$ , where the F’s are Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …). For instance, the circle (1)

$${x^2} + {\left( {y + {1 \over 2}} \right)^2} = {5 \over 4}$$
passes through the points $\left( {{1 \over 1},{0 \over 1}} \right),\,\left( {{1 \over 2},{1 \over 2}} \right),\,\left( {{1 \over 5},{3 \over 5}} \right),\,\left( {{1 \over {13}},{8 \over {13}}} \right),\left( {{1 \over {34}},{{21} \over {34}}} \right),\,...,$ which can be easily checked. See Figure 1. The purpose of this paper is to find other Fibonacci fraction circles. Several of these circles have been discovered independently by Kocik. [1]

Type
Articles
Copyright
© The Authors, 2022. Published by Cambridge University Press on behalf of The Mathematical Association

References

Kocik, J., Fibonacci Numbers and Ford Circles, arXiv preprint arXiv:2003.00852 (2020).Google Scholar
Kimberling, C., Hyperbolas, Fibonacci, Fibonacci Quarterly 28 (1990) pp. 2227.Google Scholar
Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Inc. New York (2001).10.1002/9781118033067CrossRefGoogle Scholar