Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-02-11T16:02:04.411Z Has data issue: false hasContentIssue false

LEARNING IN BAYESIAN GAMES BY BOUNDED RATIONAL PLAYERS I.

Published online by Cambridge University Press:  02 March 2005

TAESUNG KIM
Affiliation:
Seoul National University
NICHOLAS C. YANNELIS
Affiliation:
University of Illinois at Urbana–Champaign
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study learning in Bayesian games (or games with differential information) with an arbitrary number of bounded rational players, i.e., players who choose approximate best response strategies [approximate Bayesian Nash Equilibrium (BNE) strategies] and who also are allowed to be completely irrational in some states of the world. We show that bounded rational players by repetition can reach a limit full information BNE outcome. We also prove the converse, i.e., given a limit full information BNE outcome, we can construct a sequence of bounded rational plays that converges to the limit full information BNE outcome.

Type
Research Article
Copyright
© 1997 Cambridge University Press