Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-11T07:20:24.032Z Has data issue: false hasContentIssue false

Identification key to the lichen species of the parmelioid clade in Kenya

Published online by Cambridge University Press:  29 November 2022

Edit Farkas*
Affiliation:
Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány u. 2–4, H-2163 Vácrátót, Hungary
Arthur Macharia Muhoro
Affiliation:
Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, H-2100 Gödöllő, Hungary
*
Author for correspondence: Edit Farkas. E-mail: farkas.edit@ecolres.hu

Abstract

Of the c. 900 lichen species known from Kenya, 178 belong to the parmelioid clade. Several of these parmelioid taxa require further revisionary studies. An identification key to the species of the parmelioid clade, based on updated nomenclature, is produced to support the practical work in collecting and selecting certain parmelioid lichens for further research. A new combination Parmotrema nyasense (C. W. Dodge) R. S. Egan comb. nov. in Egan et al., Bibliotheca Lichenologica 110, 383 (2016) is published here by R. S. Egan.

Type
Standard Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the British Lichen Society

Introduction

East African fruticose and foliose lichens were studied in detail through the joint efforts of Dougal Swinscow and Hildur Krog in the 1970s and 1980s, resulting in a synthesis in 1988 (Swinscow & Krog Reference Swinscow and Krog1988). The taxonomy and nomenclature of taxa treated in their identification book ‘Macrolichens of East Africa’ have been significantly changed as a result of molecular genetic studies carried out during the last decades in several taxonomic groups, especially in the family Parmeliaceae (e.g. Blanco et al. Reference Blanco, Crespo, Elix, Hawksworth and Lumbsch2004, Reference Blanco, Crespo, Ree and Lumbsch2006; Crespo et al. Reference Crespo, Lumbsch, Mattsson, Blanco, Divakar, Articus, Wiklund, Bawingan and Wedin2007, Reference Crespo, Kauff, Divakar, del Prado, Pérez-Ortega, de Paz G, Ferencova, Blanco, Roca-Valiente and Núñez-Zapata2010, Reference Crespo, Divakar and Hawksworth2011; Divakar et al. Reference Divakar, Lumbsch, Ferencova, Del Prado and Crespo2010; Thell et al. Reference Thell, Crespo, Divakar, Kärnefelt, Leavitt, Lumbsch and Seaward2012; Leavitt et al. Reference Leavitt, Kirika, Amo de Paz, Huang, Hur, Elix, Grewe, Divakar and Lumbsch2018; Grewe et al. Reference Grewe, Ametrano, Widhelm, Leavitt, Distefano, Polyiam, Pizarro, Wedin, Crespo and Divakar2020). This species-rich lichen family is widely distributed in the Southern Hemisphere and its largest clade, the parmelioid clade, contains one tenth of the lichen species known worldwide (with c. 1800 spp. (Kirk et al. Reference Kirk, Cannon, Minter and Stalpers2008; Thell et al. Reference Thell, Crespo, Divakar, Kärnefelt, Leavitt, Lumbsch and Seaward2012)). The group is also rich in lichen secondary metabolites with various bioactive and other potential roles. However, the identification of these taxa is difficult since the only key to macrolichens of East Africa (Swinscow & Krog Reference Swinscow and Krog1988) needs to be revised. In an attempt to update a considerable part of the key, we are concentrating on parmelioid taxa in Kenya. This family is not only rich in species, but also characterized by an enormous diversity in its lichen secondary metabolites (LSMs) (Divakar & Upreti Reference Divakar and Upreti2005). Additionally, our knowledge of the various biological and other roles of these unique substances has also increased (Molnár & Farkas Reference Molnár and Farkas2010; Nguyen et al. Reference Nguyen, Chollet-Krugler, Gouault and Tomasi2013; Petrova et al. Reference Petrova, Kello, Kuruc, Backorova, Petrovova, Vilkova, Goga, Rucova, Backor and Mojzis2021). However, little information is available regarding the application of LSMs in terms of their potential insecticidal and antiprotozoal activity (Muhoro & Farkas Reference Muhoro and Farkas2021). Since Parmeliaceae is largely found in the Southern Hemisphere with main distribution centres being in southern Africa, South America and Australia (Elix Reference Elix1993), field collectors in these regions frequently meet representatives of this taxonomic group. In the case of Kenya, 178 of the c. 900 lichen species belong to the parmelioid clade (Krog & Swinscow Reference Krog and Swinscow1987; Swinscow & Krog Reference Swinscow and Krog1988; Hale Reference Hale1990; Staiger & Kalb Reference Staiger and Kalb1995; Alstrup & Aptroot Reference Alstrup and Aptroot2005; Alstrup & Christensen Reference Alstrup and Christensen2006; Archer et al. Reference Archer, Elix, Fischer, Killmann and Sérusiaux2009; Alstrup et al. Reference Alstrup, Aptroot, Divakar, LaGreca and Tibell2010; Kirika et al. Reference Kirika, Mugambi, Lücking and Lumbsch2012, Reference Kirika, Divakar, Crespo, Gatheri, Mugambi, Leavitt, Moncada and Lumbsch2016a, Reference Kirika, Divakar, Crespo, Gatheri, Mugambi, Leavitt, Moncada and Lumbschb, Reference Kirika, Divakar, Crespo, Gatheri, Mugambi, Leavitt, Moncada and Lumbschc, Reference Kirika, Divakar, Crespo, Mugambi, Orock, Leavitt, Gatheri and Lumbsch2017a, Reference Kirika, Divakar, Crespo, Mugambi, Orock, Leavitt, Gatheri and Lumbschb, Reference Kirika, Divakar, Crespo and Lumbsch2019; Lücking & Timdal Reference Lücking and Timdal2016; Bjelland et al. Reference Bjelland, Bendiksby and Frisch2017; Kantelinen et al. Reference Kantelinen, Hyvärinen, Kirika and Myllys2021; Kirika & Lumbsch Reference Kirika and Lumbsch2021) .

Certain species of the parmelioid clade were investigated in our study to determine their potential insecticide role, the second author using his parasitological experience to carry out field and experimental studies on malaria vector mosquitoes. To aid further field collections of relatively frequent lichens, one of the main aims of this study was to prepare a practical key for identifying species of the parmelioid clade found in Kenya.

Materials and Methods

The list of parmelioid taxa in Kenya (see Supplementary Material, available online) was extracted from the species treated by Swinscow & Krog (Reference Swinscow and Krog1988). Additional species were added from recently published literature sources (Kirika et al. Reference Kirika, Divakar, Crespo, Gatheri, Mugambi, Leavitt, Moncada and Lumbsch2016a, Reference Kirika, Divakar, Crespo, Mugambi, Orock, Leavitt, Gatheri and Lumbschb, Reference Kirika, Divakar, Crespo, Leavitt, Mugambi, Gatheri and Lumbschc, Reference Kirika, Divakar, Buaruang, Leavitt, Crespo, Gatheri, Mugambi, Benatti and Lumbsch2017a, Reference Kirika, Divakar, Leavitt, Buaruang, Crespo, Mugambi, Gatheri and Lumbschb, Reference Kirika, Divakar, Crespo and Lumbsch2019). Altogether 178 species were listed belonging to the genera Bulborrhizina (1), Bulbothrix (9), Canoparmelia (9), Cetrelia (1), Crespoa (1), Flavoparmelia (4), Flavopunctelia (2), Hypotrachyna (37), Melanelixia (1), Myelochroa (1), Parmelia (2), Parmelinella (1), Parmotrema (64), Pseudoparmelia (2), Punctelia (9), Relicina (4), Remototrachyna (1) and Xanthoparmelia (29). In compiling the key to parmelioid lichen species of Kenya, the most important sources were the identification keys prepared by Swinscow & Krog (Reference Swinscow and Krog1988), Divakar & Upreti (Reference Divakar and Upreti2005) and Awasthi (Reference Awasthi2007). Several valuable works on various genera were also studied from the Neotropics (Adler Reference Adler1992, Reference Adler2014; Sipman et al. Reference Sipman, Elix and Nash2009; Canêz & Marcelli Reference Canêz and Marcelli2010; Benatti Reference Benatti2012a, Reference Benattib, Reference Benatti2013, Reference Benatti2014; Kukwa et al. Reference Kukwa, Bach, Sipman and Flakus2012; Divakar et al. Reference Divakar, Crespo, Núñez-Zapata, Flakus, Sipman, Elix and Lumbsch2013; Spielmann & Marcelli Reference Spielmann and Marcelli2020), and Smith et al. (Reference Smith, Aptroot, Coppins, Fletcher, Gilbert, James and Wolseley2009) was consulted for morphological details. Some of the important morphological characters are illustrated: lamina, lobe margin, lower and upper surface (Fig. 1A); cilia (Figs 1B & 2A); rhizines (Figs 1B, 2B & 3); isidia (Fig. 4); pseudocyphellae (Fig. 5A); soredia (Figs 5B & 6).

Fig. 1. Parts of a foliose thallus indicated by arrows. A, upper and lower surface, lamina, lobe margin (Flavoparmelia caperata, A. M. Muhoro 21/01). B, appendages on the thallus: cilia, rhizines (Parmotrema ultralucens, VBI 2217). Scales: A = 1 mm; B = 0.5 mm. In colour online.

Fig. 2. Appendages on the thallus. A, bulbate cilia indicated by arrows (Bulbothrix isidiza, VBI 1691). B, branched rhizine (Parmotrema ultralucens, VBI 2217). Scales: A & B = 0.5 mm. In colour online.

Fig. 3. Lower surface of the thallus (Flavoparmelia caperata, A. M. Muhoro 21/01). A, paler zone at the margin with pale rhizines. B, inner dark rhizines. Scales: A & B = 0.5 mm. In colour online.

Fig. 4. Laminal isidia. A, semiglobular to cylindrical isidia often with brown tips, mostly simple (Bulbothrix isidiza, VBI 1691). B, cylindrical and claviform isidia (Hypotrachyna vexans, VBI 1741). C, cylindrical granular isidia with brown tips (Parmelinella schimperiana, VBI 2309). D, subglobose to cylindrical or inflated isidia, simple or branched (Parmotrema tinctorum, VBI 4917). Scales: A‒D = 0.2 mm. In colour online.

Fig. 5. Morphological details (Flavopunctelia flaventior, VBI 2321). A, laminal pseudocyphellae. B, marginal linear soralia. Scales: A & B = 0.5 mm. In colour online.

Fig. 6. Laminal punctiform soralia. A, Canoparmelia texana (VBI 2308). B, Parmotrema sp. (A. M. Muhoro 20/01). Scales: A = 0.5 mm; B = 1 mm. In colour online.

The dichotomous main key leads to species where the genus has only a small number of representatives (maximum 4 species), but otherwise to genera. Larger genera are treated separately after the main key. Bulborrhizina (1) is treated in the generic key (Bulbothrix s. lat.) together with Bulbothrix (9); Canoparmelia (9) and Pseudoparmelia (2) are also treated in the same key.

The key was tested using East African (mostly Tanzanian) herbarium specimens deposited in VBI (abbreviation according to Thiers (Reference Thiers2022)) and recently collected samples. Fragments of parmelioid thalli were collected by the second author in Kenya in 2020 and 2021; localities are listed below. Morphology and anatomy were studied using a Nikon Eclipse/NiU compound microscope and a Nikon SMZ18 stereomicroscope. Micrographs were prepared using a Nikon Fi3 camera with NIS-Elements BR ML software. HPTLC analysis was carried out according to standard methods for analyzing lichen samples described by Arup et al. (Reference Arup, Ekman, Lindblom and Mattsson1993) and Molnár & Farkas (Reference Molnár and Farkas2011).

Specimen details

Localities visited

Kenya: Uasin Gishu County: Eldoret in Sukunanga estate opposite Toyota Kenya c. 1.5 km from Sosiani River along Nakuru road, 0°29ʹ32ʺN, 35°18ʹ06ʺE, alt. 2129 m, from bark of trees, 2020, A. M. Muhoro 20/01. Nyeri County: at the foot of Mt Kenya, c. 1 km from Naro Moru entry gate to Kenya Wildlife Service in Gitinga Village, 0°10ʹ25.84ʺS, 37°9ʹ3.40ʺE, alt. 2454 m, from bark, twigs and branches of trees in tropical rainforest, 2021, A. M. Muhoro 21/01, 21/02.

Specimens used for micrographs

Bulbothrix isidiza (Nyl.) Hale. Tanzania: Morogoro Region: Northern Uluguru Mts, near the town of Morogoro, valley leading S from Bigwa Mission to Lupanga peak, on E-facing slope, alt. 1100–1200 m, from bark of Dahlbergia lactea in dry rocky woodland, 1988, T. Pócs 88191/P (VBI 1691).

Canoparmelia texana (Tuck.) Elix & Hale (as Pseudoparmelia texana (Tuck.) Hale). Tanzania: Arusha Region: Ngorongoro Conservation Area, NE rim of Ngorongoro Crater, inner slope, NW of Oljoro Nyuki, alt. 2220 m, ramicolous in mature, mist affected, heavily grazed Acacia lahai stand, very rich in epiphytes, 1989, T. Pócs, A. Kijazi, P. Murphy 89011/PB, det. H. Krog, rev. E. Farkas (VBI 2308).

Flavopunctelia flaventior (Stirt.) Hale (as Punctelia flaventior (Stirt.) Krog). Tanzania: Arusha Region: Ngorongoro Conservation Area, NE rim of Ngorongoro Crater, inner slope, NW of Oljoro Nyuki, alt. 2220 m, ramicolous in mature, mist affected, heavily grazed Acadia lahai stand, very rich in epiphytes, 1989, T. Pócs, A. Kijazi, P. Murphy 89011/X, det. H. Krog, rev. E. Farkas (VBI 2321).

Hypotrachyna vexans (Zahlbr. ex W. L. Culb. & C. F. Culb.) Divakar et al. (as Cetrariastrum vexans (Zahlbr.) W. L. Culb. & C. F. Culb.). Tanzania: Mbeya Region: Southern Highlands, Poroto Mts, W of Isongole Village, SE of Ngozi Crater, alt. 2000 m, from bark of Hagenia sp. in montane rainforest, 1989, T. Pócs, E. Farkas, H. Krog 89128/H, det. H. Krog, rev. E. Farkas (VBI 1741).

Parmelinella schimperiana Kirika & Divakar (as Pseudoparmelia wallichiana (Taylor) Krog & Swinscow). Tanzania: Arusha Region: Mt Meru, W slope, on the ridge above Laikinoi, alt. 2600 m, corticolous in Juniperus-Podocarpus usambarensis forest, 1988, T. Pócs & Helsinki Univ. Bot. Dept. 88296/L, det. H. Krog, rev. E. Farkas (VBI 2309).

Parmotrema tinctorum (Nyl.) Hale. Tanzania: Tanga Region: Lushoto District, West Usambara Mts, W slopes of Gonja Hill, 5 km E of Mgwashi Village, alt. 1600–1700 m, from bark in montane evergreen forest, 1988, T. Pócs, H. Krog 88205/LC, det. H. Krog (VBI 1741).

Parmotrema ultralucens (Krog) Hale. Tanzania: Tanga Region: Lushoto District, East Usambara Mts, Hunga stream valley, below Derema Village, alt. 840 m, rupicolous on granitic river-bed rocks, 1987, K. Pócs 87037/U, det. H. Krog (VBI 2217).

Key to species of the parmelioid clade in Kenya

Parmelioid species share the following characters within Parmeliaceae: photobiont green alga; foliose growth form, not umbilicate, thallus corticate above and below, adnate or loosely attached to substratum; presence of rhizines; medulla solid, grey, yellowish green or brownish; if present, fruiting body apothecium with thalline exciple; simple ascospores; laminal pycnidia.

Further keys lead to species of the genera Bulborrhizina (1) and Bulbothrix (9), Canoparmelia (9) and Pseudoparmelia (2), Hypotrachyna (37), Parmotrema (64), Punctelia (9) and Xanthoparmelia (29) and follow the main key.

  1. 1 Pseudocyphellae present, may occur on both sides ……… 2

    Pseudocyphellae absent, cortex continuous on both sides ……… 8

  2. 2(1) Pseudocyphellae may occur on both upper and lower surfaces in the genus but this species has pseudocyphellae on upper surface only, together with granular and coralloid isidia on large wide lobes, lower side is black with black rhizines; cortex K+ yellow, atranorin; medulla K−, C−, KC+ pink, Pd−, alectoronic acid, α-collatolic acid ……… ……… Cetrelia braunsiana (Müll. Arg.) W. L. Culb. & C. F. Culb.

    Pseudocyphellae present on upper surface, thallus otherwise ……… 3

  3. 3(2) Thallus grey; cortex K+ yellow, atranorin ……… 4

    Thallus yellow-green or brown; cortex K−, with or without usnic acid ……… 6

  4. 4(3) Pseudocyphellae mostly linear effigurate, reticulate, seldom punctiform, lobes sublinear; medulla K+ red, Pd+ orange, salazinic acid ……… 5

    Pseudocyphellae punctiform to suborbicular, lobes rotund ……… Punctelia (9 species)

  5. 5(4) Pseudocyphellae linear effigurate, cylindrical isidia present with brown tips; lobes 1–3 mm wide, underside black; rhizines simple to bifurcate; lignicolous at c. 3000 m alt. ……… Parmelia saxatilis (L.) Ach.

    Pseudocyphellae linear, reticulate, often developing into soredia; lobes 2–5 mm wide, underside black; rhizines simple to squarrose; saxicolous at 3500–4200 m alt. ……… Parmelia sulcata Taylor

  6. 6(3) Thallus olive to reddish brown; isidia present, cylindrical and punctiform soredia originate from pseudocyphellae, lower side brown to black with scattered simple rhizines; cortex without usnic acid, HNO3−; medulla C+ red, lecanoric acid ……… ……… Melanelixia subaurifera (Nyl.) O. Blanco et al.

    Thallus yellow-green, pseudocyphellae punctiform to elongate; cortex with usnic acid; medulla C+ red, lecanoric acid 7

  7. 7(6) Soredia present, soralia marginal linear or laminal punctiform; underside black, with a brown and glossy, broad, naked marginal zone; rhizines few, scattered, usually black but towards the margin pale brown or with white tips; apothecia common, with sorediate thalline exciple; ascospores long ellipsoid, 15–18 × 6–8 μm. ……… Flavopunctelia flaventior (Stirt.) Hale

    Soredia and isidia absent; underside black, glossy brown or white mottled in a broad marginal zone; rhizines short, inconspicuous; apothecia often numerous towards the centre of the thallus, with a pseudocyphellate thalline exciple; ascospores ellipsoid, 12–15 × 8–10 μm ……… Flavopunctelia praesignis (Nyl.) Hale

  8. 8(1) Thallus yellow, yellow-green or brown ……… 9

    Thallus grey ……… 18

  9. 9(8) Thallus brown, grey-brown; upper cortex HNO3+ blue-green, without usnic acid ……… Xanthoparmelia pr. p.

    Thallus yellow, yellow-green, pale yellowish grey; upper cortex HNO3−, with usnic acid ……… 10

  10. 10(9) Bulbate cilia present at lobe margin, lobes pale yellow ……… 11

    Lobe margin without cilia, yellow-green to green (pale yellow in Relicina abstrusa) ……… 14

  11. 11(10) Isidia absent ……… 12

    Cylindrical isidia present ……… 13

  12. 12(11) Thallus yellow-green to green, with 1–2 mm wide sublinear, dichotomous lobes; underside black; cortex with usnic acid; medulla K+ yellow, C+ pale yellow to orange (unknown substance) and Pd+ deep orange (unknown substance, ‘echinocarpic acid’); apothecia laminal, thalline exciple pilose; ascospores subglobose, 6–8 × 3–5 μm……… ……… Relicina echinocarpa (Kurok.) Hale

    Lobes 3–6 mm wide, yellow-green to green, medulla pale yellow; apothecia laminal, thalline exciple crenate; ascospores subglobose, 8–10 × 7–8 μm; undetermined pigment and substances, ±atranorin (trace); corticolous at 1500–2200 m alt. ……… ……… Relicina limbata (Laurer) Hale

  13. 13(11) Lobes 1–2 mm wide, pale yellow, marginal cilia well developed, clearly bulbate; medulla white; apothecia absent in East African specimens; cortex, usnic acid; medulla K+ red, Pd+ orange, norstictic acid; corticolous in mangroves at 0–300 m alt. ……… ……… Relicina abstrusa (Vain.) Hale

    Lobes 0.8–1.5 mm wide, bright yellow to yellow-green, ±eciliate; rhizines sometimes protruding beyond the lobe margins; medulla pigmented faintly yellow, especially near the upper cortex; apothecia common, up to 2 mm diam., thalline margin entire or crenate, disc flat; ascospores 8–10 × 4–6 μm; cortex, usnic acid; medulla Pd+ orange-red, protocetraric acid, ±fatty acid; corticolous on twigs and branches in mangroves, 0–500 m alt. ……… Relicina malaccensis (Nyl.) Kirika et al.

  14. 14(10) Lobes rounded ……… 15

    Lobes elongated ……… Xanthoparmelia pr. p.

  15. 15(14) Laminal soralia present ……… 16

    Laminal soralia absent, dactyls present or absent ……… 17

  16. 16(15) Lobes 5–10 mm wide, imbricate in central parts, soralia starting from individual pustules but soon coalescing to cover larger areas; underside black with a fairly wide brown, naked marginal zone; rhizines simple, slender, dense or scattered, black, often tipped with white or brown; apothecia not seen in East African material; pycnoconidia weakly bifusiform, 5–6 μm long; cortex, usnic acid, ±atranorin (trace); medulla Pd+ orange-red, protocetraric acid, caperatic acid; corticolous at 1500–3600 m alt. ……… Flavoparmelia caperata (L.) Hale

    Lobes 1–5 mm wide, soralia punctiform, becoming confluent over larger areas; underside black, with a narrow, brown marginal zone; rhizines simple, black to brown, some tipped with white; apothecia and pycnidia not seen in material from Kenya; cortex, usnic acid; medulla K+ red, Pd+ orange, salazinic acid; corticolous, lignicolous, or saxicolous at 1100–2700 m alt. ……… Flavoparmelia soredians (Nyl.) Hale

  17. 17(15) Lobes 1–2.5 mm wide, dactyls laminal, crowded in central parts of the thallus, mainly closed but occasionally becoming eroded or with a small perforation at the apex; underside velvety black to the margins; rhizines short, black; apothecia rare, up to 2 mm diam., with a thick, crenate thalline margin; spores 10–16 × 5–8 μm; pycnoconidia filiform, 10–12 μm long; cortex, usnic acid; medulla Pd+ orange-red, protocetraric acid; saxicolous at 1750 m alt. ……… ……… Flavoparmelia pachydactyla (Hale) Hale

    Lobes 5–8 mm wide, without dactyls; underside black, with a narrow, brown, naked marginal zone; rhizines simple, black or tipped with white; apothecia not seen in East African material; pycnoconidia weakly bifusiform, 7–8 μm long; cortex, usnic acid, ±atranorin (trace); medulla Pd+ orange-red, protocetraric acid, caperatic acid; saxicolous at 3600 m alt. ……… ……… Flavoparmelia rutidota (Hook. f. & Taylor) Hale

  18. 18(8) Upper surface mostly maculate ……… 19

    Upper surface mostly emaculate ……… 20

  19. 19(18) Lobes large, rotund, wider than 0.5 cm, upper cortex often reticulately cracked; maculae may occur… ……… ……… Parmotrema pr. p. (65 species)

    Lobes narrower than 0.5 cm, rotund, subrotund or sublinear; emaculate species may occur ……… ………Canoparmelia (9 species) and Pseudoparmelia (2 species)

  20. 20(18) Bulbate cilia present at lobe margin………Bulborrhizina (1 species) and Bulbothrix (9)

    Lobe margin without bulbate cilia ……… 21

  21. 21(20) Lobes large, rotund, wider than 0.5 cm ……… Parmotrema pr. p. (65 species)

    Lobes narrower, rotund or elongated, narrower than 0.5 cm ……… 22

  22. 22(21) Thallus with secalonic acid A yellow pigment ……… 23

    Thallus without secalonic acid A yellow pigment ……… Hypotrachyna (37 species)

  23. 23(22) Medulla yellow to salmon pink, pigment K−; lobes sublinear to irregular, 3–5 mm wide, pale grey; rhizines mainly simple but a few branched, some growing out horizontally from the margins; pustular soralia and open dactyls laminally and submarginally situated; cortex K+ yellow, atranorin; medulla, triterpenoids, secalonic acid A ……… ……… Myelochroa aurulenta (Tuck.) Elix & Hale

    Medulla white; lobes irregularly to subirregularly branched, 3–8 mm wide, margins ciliate; upper surface grey, grey-green, usually pruinose; isidia cylindrical, mostly simple, also branched; lower surface black with brown papillate margins; rhizines black, simple, evenly distributed; apothecia 1–5 mm; ascospores 5–10 × 5–7.5 μm; pycnidia not seen in material from Kenya; cortex K+ yellow, UV−, secalonic acid A and atranorin; medulla K+ yellow turning red, C−, KC−, Pd+ orange-red, UV−, salazinic acid ……… Parmelinella schimperiana Kirika & Divakar

Key to species of Bulborrhizina Kurok. (1) and Bulbothrix Hale (9)

Bulborrhizina: thallus pale straw-yellow, loosely adnate, divaricate, composed of linear lobes divided dichotomously, canaliculate below. Cortex with atranorin.

Bulbothrix: thallus grey, relatively small. Surface without pseudocyphellae, marginal cilia bulbate. Cortex with atranorin. Apothecia, isidia or phyllidia may occur.

  1. 1 Apothecia present or absent; soredia, isidia and phyllidia absent ………2

    Apothecia rare; isidia or phyllidia present ………5

  2. 2(1) Underside pale ………3

    Underside black ………4

  3. 3(2) Apothecia present; underside pale brown ……… Bulbothrix hypocraea (Vain.) Hale

    Apothecia absent; underside pale straw-yellow; medulla, salazinic acid (major), gyrophoric acid (minor) ……… ……… Bulborrhizina africana Kurok.

  4. 4(2) Ascospores 8–12 × 6–8 μm ……… Bulbothrix sensibilis (Steiner & Zahlbr.) Hale

    Ascospores 16–20 × 8–12 μm ……… Bulbothrix meizospora (Nyl.) Hale

  5. 5(1) Underside pale brown ………6

    Underside dark brown to black ………7

  6. 6(5) Upper surface faintly to distinctly maculate, cilia bulbate ……… Bulbothrix isidiza (Nyl.) Hale

    Upper surface emaculate, cilia reduced to bulbate nodules ……… Bulbothrix kenyana Kirika et al.

  7. 7(5) Phyllidia numerous, cylindrical isidia absent ……… Bulbothrix suffixa (Stirt.) Hale

    Phyllidia rare or absent, cylindrical isidia present ………8

  8. 8(7) Rhizines branched; medulla C+ rose, Pd−, gyrophoric acid ……… Bulbothrix goebelii (Zenker) Hale

    Rhizines simple; medulla C−, Pd+ orange ………9

  9. 9(8) Apothecia ecoronate; K+ yellow turning red, salazinic acid present ……… ………Bulbothrix sublaevigatoides (C. W. Dodge) Kirika et al.

    Apothecia (rare) coronate; K+ red, norstictic acid present ……… Bulbothrix ventricosa (Hale & Kurok.) Hale

Key to species of Canoparmelia Elix & Hale (9) and Pseudoparmelia Lynge (2)

Canoparmelia: lobes usually narrower than 5 mm, rotund or subrotund. Marginal cilia absent. Medulla white. Apothecia, soralia, isidia or dactyls may occur. Rhizines usually simple, often with white, frayed tips. Cortex usually emaculate, with atranorin and/or usnic acid. Corticolous.

Pseudoparmelia: lobes usually narrower than 5 mm, sublinear or irregularly incised. Marginal cilia absent. Medulla white or pigmented. Apothecia and isidia occur. Rhizines usually simple. Cortex shiny, emaculate, with atranorin. Saxicolous.

  1. 1 Thallus pale yellow to yellow-green ……… Canoparmelia ecaperata (Müll. Arg.) Elix & Hale

    Thallus pale grey to ash grey ………2

  2. 2(1) Thallus saxicolous ………3

    Thallus corticolous ………4

  3. 3(2) Medulla white, with salazinic acid (Pd+ orange-red, K+ red); lobes sublinear, 4–8(– 10) mm wide; isidia laminal, semiglobular or cylindrical, simple; underside black with a brown apical zone; apothecia laminal, thalline margin isidiate ……… ……… Pseudoparmelia usambarensis (J. Steiner & Zahlbr.) Krog & Swinscow

    Medulla faintly pink, with perlatolic acid aggr., echinocarpic acid (Pd+ deep orange, K+ yellow, C+ yellow, KC+ salmon); lobes irregularly incised, 2–2.5–(3) mm wide, imbricate; isidia short, fairly coarse, cylindrical to claviform, simple or sparingly branched; underside black with a dark brown, naked marginal zone; apothecia rare, with crenate thalline margin ……… ……… Pseudoparmelia singularis Krog & Swinscow

  4. 4(2) Soredia, isidia or dactyls present ………5

    Soredia, isidia or dactyls absent ………9

  5. 5(4) Laminal, punctiform soralia present ……… Canoparmelia texana (Tuck.) Elix & Hale

    Isidia or dactyls present ………6

  6. 6(5) Laminal dactyls with open tips present ……… Canoparmelia pustulescens (Kurok.) Elix

    Cylindrical isidia present ………7

  7. 7(6) Upperside matt, emaculate, Pd+ orange-red (protocetraric acid) ……… ……… Canoparmelia amazonica (Nyl.) Elix & Hale

    Upperside maculate, cracked and rugose, Pd−, containing perlatolic acid or divaricatic acid ………8

  8. 8(7) Medulla with perlatolic acid ……… Canoparmelia caroliniana (Nyl.) Elix & Hale

    Medulla with divaricatic acid ……… Canoparmelia concrescens (Vain.) Elix & Hale

  9. 9(4) Lobes 1–3 mm wide………Canoparmelia rodriguesiana (Hue) Elix

    Lobes 3–8 mm wide ………10

  10. 10(9) Upperside maculate; medulla with divaricatic acid and an unknown substance (C+ pale pink, KC+ purple) ……… ……… Canoparmelia nairobiensis (J. Stein. & Zahlbr.) Elix & Hale

    Upperside emaculate; medulla with protocetraric acid (Pd+ orange-red).……… ………Canoparmelia somaliensis (Müll. Arg.) Elix & Hale

Key to species of Hypotrachyna (Vain.) Hale (37)

Lobes pale grey or pale yellow above, black below, generally sublinear, sometimes irregularly incised. Rhizines black, sparingly to densely branched, the branching dichotomous or squarrose, often with unbranched rhizines immixed or dominating. Branched or unbranched rhizines or cilia may also be marginally situated. Apothecia sessile to substipitate, with imperforate disc. Pycnoconidia bifusiform.

  1. 1 Soredia, isidia and dactyls absent ………2

    Soredia, isidia or dactyls present ………7

  2. 2(1) Medulla Pd+ orange → red ………3

    Medulla Pd− ………4

  3. 3(2) Rhizines simple to sparingly branched; medulla K− (protocetraric acid); saxicolous species ……… ……… Hypotrachyna fissicarpa (Kurok.) Hale

    Rhizines densely branched; medulla K+ red (salazinic acid); corticolous species ……… Hypotrachyna sublaevigata (Nyl.) Hale

  4. 4(2) Rhizines mainly simple; di-O-methylgyrophoric acid and related substances (‘horrescens complex’Footnote 1) present ……… ……… . Hypotrachyna damaziana (Zahlbr.) Krog & Swinscow

    Rhizines distinctly branched; chemistry otherwise ………5

  5. 5(4) Medulla C+ rose (gyrophoric acid) ……… Hypotrachyna scytophylla (Kurok.) Hale

    Medulla C+ yellow-orange or C− ………6

  6. 6(5) Rhizines moderately branched; medulla KC+ orange, barbatic acid, 4-O-demethylbarbatic acid and obtusatic acid………Hypotrachyna ducalis (Jatta) Hale

    Rhizines densely dichotomously branched; medulla KC+ orange, barbatic acid (major) obtusatic acid (minor) ……… ……… Hypotrachyna kenyana Kirika et al.

  7. 7(1) Thallus with isidia or closed dactyls ………8

    Thallus with soredia or open dactyls ………16

  8. 8(7) Thallus with closed dactyls; substances in the lividic acid complex present ……… ……… Hypotrachyna polydactyla (Krog & Swinscow) T. H. Nash

    Thallus with isidia; chemistry otherwise ………9

  9. 9(8) Medulla Pd+ orange ………10

    Medulla Pd− ………11

  10. 10(9) Upper cortex yellow (usnic acid); medulla, norstictic and galbinic acids present………. . . . Hypotrachyna microblasta (Vain.) Hale

    Upper cortex grey (atranorin); medulla K+ red, Pd+ orange, salazinic acid, protolichesterinic acid present ……… ………Hypotrachyna vexans (Zahlbr. ex W. L. Culb. & C. F. Culb.) Divakar et al.

  11. 11(9) Isidia with conspicuous apical and lateral cilia, KC+ rose, ‘horrescens complex’ ……… ………Hypotrachyna horrescens (Taylor) Krog & Swinscow

    Isidia without or with inconspicuous cilia ………12

  12. 12(11) Medulla C+ rose (gyrophoric acid complex) ………13

    Medulla C+ yellow-orange or C− ………15

  13. 13(12) Isidia in scattered submarginal and laminal groups; lobes 3–6 mm wide ……… ……… Hypotrachyna spathulata (Kurok.) Krog & Swinscow

    Isidia crowded, covering most of the thallus; lobe width various ………14

  14. 14(13) Rhizines mainly simple; lobes short and 1–3 mm wide ……… Hypotrachyna minarum (Vain.) Krog & Swinscow

    Rhizines frequently branched; lobes elongate and 2–3 mm wide (on twigs), or short and more than 5 mm wide (on tree trunks and rock) ……… Hypotrachyna neodissecta (Hale) Hale

  15. 15(12) Rhizines densely branched; medulla KC− (fatty acids) ………Hypotrachyna costaricensis (Nyl.) Hale

    Rhizines moderately branched; medulla KC+ orange, barbatic acid, KC+ yellow- orange, 4-O-demethylbarbatic acid, faint traces of obtusatic and norobtusatic acids ……… Hypotrachyna orientalis (Hale) Hale

  16. 16(7) Upper cortex yellow (usnic acid) ………17

    Upper cortex grey (usnic acid absent) ………19

  17. 17(16) Soralia subapical, subcapitate, with abundant soredia, salazinic acid present ………18

    Soralia laminal, pustular, usually with sparse soredia ……… Hypotrachyna meyeri (Zahlbr.) Streim.

  18. 18(17) Norstictic acid present ………Hypotrachyna sinuosa (Sm.) Hale

    Norstictic acid absent………Hypotrachyna meridionalis Kirika et al.

  19. 19(16) Medulla pigmented yellow to salmon pink, pigment K−, barbatic and obtusatic acids present ……… ……… Hypotrachyna endochlora (Leight.) Hale

    Medulla white, at most pigmented ochraceous in patches, pigment K+ purple ………20

  20. 20(19) Thallus with subapical soralia ………21

    Thallus with mainly laminal soralia, pustules, or open dactyls ………30

  21. 21(20) Medulla Pd+ orange or red ………22

    Medulla Pd− ………24

  22. 22(21) Medulla K− (fumarprotocetraric acid) except for pigmented areas, K+ purple . . . . Hypotrachyna gondylophora (Hale) Hale

    Medulla K+ red (salazinic acid) ………23

  23. 23(22) Soralia subcapitate; rhizines densely branched ……… Hypotrachyna brevirhiza (Kurok.) Hale

    Soralia diffusely spreading; rhizines mainly simple ……… Hypotrachyna swinscowii (Hale) Krog & Swinscow

  24. 24(21) Medulla C+ rose or red ………25

    Medulla C+ yellow-orange or C− ………28

  25. 25(24) Rhizines sparingly branched; gyrophoric acid present ………26

    Rhizines densely branched; soralia subcapitate; chemistry various ………27

  26. 26(25) Soralia diffusely spreading, subapical; soredia green, powdery ……… Hypotrachyna revoluta (Flörke) Hale

    Soralia subcapitate, subapically, marginally, or laminally situated in distal parts of the lobe; soredia coarsely granular ……… ……… . Hypotrachyna catawbiensis (Degel.) Divakar et al.

  27. 27(25) Upper cortex often maculate; evernic and lecanoric acids present ………Hypotrachyna rockii (Zahlbr.) Hale

    Upper cortex emaculate; anziaic acid present ……… Hypotrachyna producta Hale

  28. 28(24) Upper cortex maculate; medulla KC+ orange with barbatic acid ………29

    Upper cortex emaculate; thallus 10 cm or more diam.; medulla KC+ red, alectoronic and α-collatolic acids present ……… ……… Hypotrachyna densirhizinata (Kurok.) Hale

  29. 29(28) K+ red, 4-O-demethylbarbatic acid and obtusatic acid (+) present ……… Hypotrachyna laevigata (Sm.) Hale

    K−, KC+ pale yellow, 4-O-demethylbarbatic acid absent, obtusatic acid (+) present ……… ………Hypotrachyna nyandaruaensis Kirika et al.

  30. 30(20) Rhizines mainly simple; K+ purple pigment absent ………31

    Rhizines moderately branched; K+ purple pigment usually present ………34

  31. 31(30) Thallus closely adnate; lobes less than 1.5 mm wide; with open dactyls, situated laminally, bursting open at maturity without the formation of soredia ……… Hypotrachyna spumosa (Asah.) Krog & Swinscow

    Thallus ±loosely attached; lobes more than 2 mm wide ………32

  32. 32(31) Thallus sorediate; soralia laminal and marginal; soredia farinose; medulla Pd+ orange, salazinic acid, protolichesterinic acid ……… ……… . Hypotrachyna sorocheila (Vain.) Divakar et al.

    Thallus pustulate ………33

  33. 33(32) Pustules in part subapical, in part laminal, without soredia; medulla C− or fleetingly pale pink, ‘horrescens complex’ present ……… ……… Hypotrachyna subfatiscens (Kurok.) Krog & Swinscow

    Pustules laminal, often near the lobe margins, with soredia; medulla distinctly C+ rose, gyrophoric acid present ……… ……… Hypotrachyna afrorevoluta (Krog & Swinscow) Krog & Swinscow

  34. 34(30) Cortex K−, UV+ bright yellow (lichexanthone) ……… Hypotrachyna formosana (Zahlbr.) Hale

    Cortex K+ yellow, UV− (atranorin) ………35

  35. 35(34) Medulla C+ blood red (unidentified substances) ……… Hypotrachyna leiophylla (Kurok.) Hale

    Medulla C− ………36

  36. 36(35) Medulla Pd+ orange-red, UV− (protocetraric acid) ………Hypotrachyna croceopustulata (Kurok.) Hale

    Medulla Pd+ pale yellow, UV+ bluish white (lividic acid complex) ……… Hypotrachyna immaculata (Kurok.) Hale

Key to species of Parmotrema Massal. (65)

Lobes in most species widely rotund apically, pale grey or pale yellow above, pale to dark brown to black below, with brown, white, or mottled marginal zone. Marginal cilia present or absent. Rhizines unbranched or rarely bifurcate or squarrose, generally sparse or absent towards periphery of lobes, rarely dimorphous (in part long and coarse, in part short and slender). Apothecia substipitate to stipitate, disc perforate or imperforate. Pycnoconidia sublageniform or filiform.

  1. 1 Soralia, isidia, phyllidia and dactyls absent ………2

    Soralia, isidia, phyllidia, or dactyls present ………35

  2. 2(1) Marginal cilia absent ………3

    Marginal cilia present ………5

  3. 3(2) Apothecia imperforate; medulla C−, Pd+ orange-red (protocetraric acid) ……… Parmotrema zollingeri (Hepp) Hale

    Apothecia perforate; medulla C+ red, Pd− (lecanoric acid) ………4

  4. 4(3) Thallus saxicolous, strongly attached; lobes less than 1 cm wide ……… Parmotrema soyauxii (Müll. Arg.) Hale

    Thallus normally corticolous, loosely attached; lobes more than 1 cm wide ……… Parmotrema andinum (Müll. Arg.) Hale

  5. 5(2) Medulla pigmented pale yellow, ochraceous, or salmon pink, pigment K− ………6

    Medulla white, at most with patches of an ochraceous, K+ purple pigment near the lower cortex ………7

  6. 6(5) Apothecia imperforate, with a dentate-ciliate thalline margin; medulla UV+ (undetermined substances); coastal species ……… ………Parmotrema pigmentiferum (Krog & Swinscow) Krog & Swinscow

    Apothecia perforate, with a smooth, eciliate thalline margin; medulla UV− (gyrophoric acid); upland species……… ……… Parmotrema subcoloratum (Hale) Hale

  7. 7(5) Upper cortex with a reticulate pattern of maculae and cracks; rhizines in part squarrose; salazinic acid present ……… ……… Parmotrema cetratum (Ach.) Hale

    Upper cortex without a reticulate pattern of maculae and cracks; rhizines not squarrose; salazinic acid present or absent ……… ………8

  8. 8(7) Underside with a distinct, white marginal zone ………9

    Underside with a brown or mottled marginal zone ………13

  9. 9(8) Apothecia perforate, medulla UV− ………10

    Apothecia mainly imperforate; medulla UV+ ………12

  10. 10(9) Underside almost entirely white; medulla C−, KC− (protolichesterinic acid) ……… Parmotrema leonis Krog & Swinscow

    Underside black in the centre, white peripherally; medullary reactions various………11

  11. 11(10) Lobe margins flat or revolute; medulla C+ red (lecanoric acid) ………Parmotrema hololobum (Hale) Hale

    Lobe margins ascending; medulla C− (norlobaridone and/or protolichesterinic acid) ……… ……… Parmotrema abessinicum (Kremp.) Hale

  12. 12(9) Spores < 20 μm long; alectoronic acid present ………Parmotrema uberrimum (Hue) Hale

    Spores > 20 μm long; both alectoronic and α-collatolic acids present ……… ………Parmotrema durumae (Krog & Swinscow) Krog & Swinscow

  13. 13(8) Apothecia present ………14

    Apothecia absent ………24

  14. 14(13) Spores > 20 μm long ………15

    Spores < 20 μm long ………17

  15. 15(14) Upper cortex emaculate; apothecia imperforate ……… Parmotrema durumae (Krog & Swinscow) Krog & Swinscow

    Upper cortex distinctly maculate; apothecia perforate or imperforate ………16

  16. 16(15) Medulla UV+ (alectoronic acid, ±α-collatolic acid, ±gyrophoric acid) ……… Parmotrema nilgherrense (Nyl.) Hale

    Medulla UV− (gyrophoric acid and/or norlobaridone, ±norstictic acid) ……… Parmotrema eunetum (Stirt.) Hale

  17. 17(14) Upper cortex distinctly maculate ………18

    Upper cortex emaculate or faintly maculate ………20

  18. 18(17) Rhizines dimorphous; salazinic acid and norlobaridone present ……… Parmotrema erubescens (Stirt.) Krog & Swinscow

    Rhizines uniform; chemical properties different ………19

  19. 19(18) Underside brown; medulla Pd+ orange (stictic and norstictic acids); coast and coastal lowlands species ……… ………Parmotrema aldabrense (C. W. Dodge) Hale

    Underside black in the centre, white, mottled, or brown peripherally; medulla Pd− (norlobaridone and/or protolichesterinic acid); upland species………Parmotrema abessinicum (Kremp.) Hale

  20. 20(17) Cortex Pd+ sulphur yellow near the apothecia (psoromic acid present); medulla C+ rose (gyrophoric acid) ……… ………Parmotrema jacarandicola (Krog & Swinscow) Krog & Swinscow

    Cortex at most Pd+ pale yellow (psoromic acid absent); medulla C+ or C−………21

  21. 21(20) Medulla UV+ (alectoronic acid) ………Parmotrema maclayanum (Müll. Arg.) Hale

    Medulla UV− (alectoronic acid absent) ………22

  22. 22(21) Thallus saxicolous; apothecia imperforate; medulla Pd+ orange-red (fumarprotocetraric acid)……… ………Parmotrema taitae (Krog & Swinscow) Krog & Swinscow

    Thallus normally corticolous; apothecia perforate; medulla Pd+ or Pd− (fumarprotocetraric acid absent) ………23

  23. 23(22) Lobe margins flat or revolute; pycnoconidia filiform; medulla C+ red (lecanoric acid) ……… ………Parmotrema hololobum (Hale) Hale

    Lobe margins ascending; pycnoconidia sublageniform; thalline exciple rarely ciliate; medulla C− (norlobaridone and/or protolichesterinic acid) ……… Parmotrema abessinicum (Kremp.) Hale

  24. 24(13) Medulla Pd+ orange or red ………25

    Medulla Pd− (but cortex may be Pd+ sulphur yellow, see (32) P. jacarandicola) and upper cortex distinctly maculate ………29

  25. 25(24) Thallus saxicolous; fumarprotocetraric acid present………Parmotrema taitae (Krog & Swinscow) Krog & Swinscow

    Thallus normally corticolous; fumarprotocetraric acid absent ………26

  26. 26(25) Upper cortex distinctly maculate ………27

    Upper cortex emaculate or faintly maculate ………31

  27. 27(26) Salazinic acid and norlobaridone present ………Parmotrema erubescens (Stirt.) Krog & Swinscow

    Salazinic acid absent, norlobaridone present or absent ………28

  28. 28(27) Norstictic acid present in combination with gyrophoric acid and/or norlobaridone; montane forest species ……… ………Parmotrema eunetum (Stirt.) Hale

    Norstictic acid present in combination with stictic acid; coastal species ………Parmotrema aldabrense (C. W. Dodge) Hale

  29. 29(24) Species of dry, well-lit lowland or upland habitats; medulla C− (norlobaridone and/or protolichesterinic acid) ……… ……… Parmotrema abessinicum (Kremp.) Hale

    Species of montane forests and the alpine zone ………30

  30. 30(29) Medulla UV+ (alectoronic acid, ±α-collatolic acid, ±gyrophoric acid) ………Parmotrema nilgherrense (Nyl.) Hale

    Medulla UV− (gyrophoric acid and/or norlobaridone) ……… Parmotrema eunetum (Stirt.) Hale

  31. 31(26) Medulla C+ rose or red ………32

    Medulla C−; substances in the lividic acid complex absent; norlobaridone and/or protolichesterinic acid or alectoronic acid, ±α-collatolic acid present ………33

  32. 32(31) Lecanoric acid present ………Parmotrema hololobum (Hale) Hale

    Gyrophoric acid present; pycnoconidia filiform; psoromic acid present in association with apothecia ……… ……… Parmotrema jacarandicola (Krog & Swinscow) Krog & Swinscow

  33. 33(31) Medulla UV− (norlobaridone and/or protolichesterinic acid) ………Parmotrema abessinicum (Kremp.) Hale

    Medulla UV+ (alectoronic acid, ±α-collatolic acid) ………34

  34. 34(33) Lobes mainly 1–2 cm wide; thallus corticolous or saxicolous; upland species above c. 1000 m altitude ……… ……… Parmotrema maclayanum (Müll. Arg.) Hale

    Lobes < 1 cm wide; thallus corticolous; coastal and lowland species below c. 1000 m altitude ……… ………Parmotrema durumae (Krog & Swinscow) Krog & Swinscow

  35. 35(1) Isidia (including sorediate isidia), phyllidia, or dactyls present ………36

    Isidia, phyllidia and dactyls absent; soralia present . ………50

  36. 36(35) Marginal cilia absent ………37

    Marginal cilia present ………40

  37. 37(36) Medulla with protocetraric acid (Pd+ orange-red) and fatty acid, cortex with atranorin; lobes 1–2 mm wide, rounded, flat or convex; closed dactyls and crescent-shaped folds covering most of the thallus; upperside maculate; underside black to the margins; saxicolous ……… Parmotrema zimbabwense (Hale) Kirika et al.

    Medulla Pd− ………38

  38. 38(37) Thallus large, loosely attached to tree bark or rock; isidia cylindrical and granular, or dactyls present; medulla C+ red (lecanoric acid) ………Parmotrema tinctorum (Nyl.) Hale

    Thallus small, strongly attached to rock; only dactyls or coarse isidia present; medulla C+ or C− ………39

  39. 39(38) Medulla C+ red (lecanoric acid) ……… ……… Parmotrema stuhlmannii (C. W. Dodge) Krog & Swinscow

    Medulla C− (physodic acid) ……… . Parmotrema tsavoense (Krog & Swinscow) Krog & Swinscow

  40. 40(36) Thallus yellow-green (usnic acid present) ……… Parmotrema nyasense (C. W. Dodge) R. S. Egan comb. nov. [MycoBank No.: MB 844542] basionym: Parmelia nyasensis C. W. Dodge, Annals of the Missouri Botanical Garden 46, 126 (1959). The nomenclatural novelty in Egan et al., Bibliotheca Lichenologica 110, 383 (2016) is published here by R. S. Egan.

    Thallus grey (usnic acid absent) ………41

  41. 41(40) Upper cortex with a reticulate pattern of maculae and cracks; rhizines in part squarrose ……… ………Parmotrema subisidiosum (Müll. Arg.) Hale

    Upper cortex without a reticulate pattern of maculae and cracks; rhizines not squarrose ………42

  42. 42(41) Medulla pigmented pale to bright yellow or orange, pigment K− ………43

    Medulla white, at most with patches of an ochraceous, K+ purple pigment near the lower cortex; isidia cylindrical, submarginally or laminally situated ………44

  43. 43(42) Medulla pigmented bright yellow to orange throughout; cylindrical isidia present; coastal species ……… ………Parmotrema sulphuratum (Nees & Flotow) Hale

    Medulla pigmented pale yellow, but sometimes inapparent; open dactyls present; lower montane forest species ……… ……… Parmotrema cryptoxanthum (des Abb.) Hale

  44. 44(42) Upperside distinctly maculate ………45

    Upperside emaculate or faintly maculate ………46

  45. 45(44) Rhizines dimorphous; salazinic acid and norlobaridone present; upland species ……… ……… Parmotrema subtinctorium (Zahlbr.) Hale

    Rhizines uniform; stictic and norstictic acids present; coastal species ……… ……… Parmotrema kwalense (Krog & Swinscow) Krog & Swinscow

  46. 46(44) Thallus coriaceous; isidia mainly laminal, never becoming sorediate ………47

    Thallus usually membranaceous; isidia mainly submarginal, often becoming sorediate-granular ………48

  47. 47(46) Medulla C+ rose, Pd−, UV− (gyrophoric acid) ……… Parmotrema pseudocrinitum (Abbayes) Hale

    Medulla C−, Pd+ orange, UV+ intensely yellow (salazinic acid, lichexanthone) ……… Parmotrema ultralucens (Krog) Hale

  48. 48(46) Upper cortex usually continuous; isidia rarely sorediate; medulla Pd+ orange (stictic acid) ……… ……… Parmotrema crinitum (Ach.) M. Choisy

    Upper cortex fragile and flaking; isidia often sorediate; medulla Pd− ………49

  49. 49(48) Medulla C+ rose, UV− (gyrophoric acid)……… Parmotrema lophogenum (Abbayes) Hale

    Medulla C−, UV+ (alectoronic acid) ……… Parmotrema mellissii (C. W. Dodge) Hale

  50. 50(35) Marginal cilia absent ………51

    Marginal cilia present ………62

  51. 51(50) Saxicolous ………52

    Corticolous ………55

  52. 52(51) Medulla Pd+ orange-red (protocetraric acid) ………Parmotrema pardii (Krog & Swinscow) Krog & Swinscow

    Medulla Pd− ………53

  53. 53(52) Medulla C− (fatty acids) ……… Parmotrema praesorediosum (Nyl.) Hale

    Medulla C+ red (lecanoric acid) ………54

  54. 54(53) Thallus small, coriaceous, strongly attached; upper cortex emaculate, shiny ………Parmotrema defectum (Hale) Hale

    Thallus usually large, relatively thin, loosely attached; upper cortex faintly maculate, often matt ……… ……… Parmotrema austrosinense (Zahlbr.) Hale

  55. 55(51) Thallus yellow or yellowish grey (usnic acid present); medulla Pd+ orange-red (protocetraric acid) ………56

    Thallus pale grey (usnic acid absent); medulla Pd+ or Pd− ………58

  56. 56(55) Thallus bright yellow to yellow-green; atranorin absent ……… Parmotrema apricum (Krog & Swinscow) Krog & Swinscow

    Thallus yellowish grey; atranorin present ………57

  57. 57(56) Echinocarpic acid and various unknowns present ……… Parmotrema dilatatum (Vain.) Hale

    Echinocarpic acid and unknowns absent ……… Parmotrema ravum (Krog & Swinscow) Sérus.

  58. 58(55) Medulla C+ red (lecanoric acid) ……… Parmotrema austrosinense (Zahlbr.) Hale

    Medulla C− ………59

  59. 59(58) Medulla Pd− (fatty acids) ……… Parmotrema praesorediosum (Nyl.) Hale

    Medulla Pd+ orange or red ………60

  60. 60(59) Medulla K+ red (salazinic acid)………Parmotrema cristiferum (Taylor) Hale

    Medulla K+ pale brown (protocetraric acid) ………61

  61. 61(60) Lobes 0.8–1.5(–2) cm wide, rarely sparingly ciliate, (cilia 0.2–0.5 mm long); upperside emaculate (or faintly maculate); soralia marginal and submarginal, soredia granular; apothecia laminal, substipitate, thalline exciple sorediate; pycnoconidia sublageniform ……… Parmotrema gardneri (C. W. Dodge) Sérus.

    Lobes 0.8–3 mm wide, eciliate; upperside maculate; soralia laminal, punctiform, more or less confluent in central parts; apothecia and pycnidia not seen in material from Kenya ……… Parmotrema epileucum (Hale) Kirika et al.

  62. 62(50) Upper cortex fragile and flaking; soralia erupting in a pustular fashion ………63

    Upper cortex continuous; soralia rarely pustular ………66

  63. 63(62) Medulla pigmented pale yellow; echinocarpic acid and fatty acids present ………Parmotrema cryptoxanthum (Abbayes) Hale

    Medulla white; chemistry otherwise ………64

  64. 64(63) Medulla Pd+ orange, UV− (stictic acid) ………Parmotrema bangii (Vain.) Hale

    Medulla Pd−, UV+ (alectoronic acid) ………65

  65. 65(64) Soralia pustular, without isidia ………Parmotrema rimulosum (C. W. Dodge) Hale

    Soralia not pustular, but occasionally interspersed with isidia ………Parmotrema mellissii (C. W. Dodge) Hale

  66. 66(62) Medulla pigmented (ochraceous yellow to salmon pink), K− ………67

    Medulla white, K− (or K+ purple, if patches of an ochraceous yellow pigment occur near the lower cortex) ………68

  67. 67(66) Medulla C+ rose in upper parts (gyrophoric acid) ………Parmotrema permutatum (Stirt.) Hale

    Medulla C− (fatty acids) ……… Parmotrema araucariarum (Zahlbr.) Hale

  68. 68(66) Upper cortex with a reticulate pattern of maculae and cracks; rhizines in part squarrose ……… ………Parmotrema reticulatum (Taylor) M. Choisy

    Upper cortex lacking a reticulate pattern of maculae and cracks; rhizines not squarrose ………69

  69. 69(68) Underside with a distinct, white marginal zone ………70

    Underside with a brown or mottled marginal zone ………72

  70. 70(69) Lobes deeply divided, with sublinear laciniae; medulla K+ red, Pd+ orange (norstictic, galbinic and salazinic acids); coastal species ……… Parmotrema parahypoptorum (W. L. Culb.) Hale

    Lobes more or less rounded, sublinear laciniae absent; medulla K−, Pd−; inland species ………71

  71. 71(70) Underside black in the centre, white peripherally; medulla UV− (norlobaridone and/or protolichesterinic acid) ……… ……… Parmotrema hababianum (Gyeln.) Hale

    Underside almost entirely white; medulla UV+ (alectoronic acid) ……… ……… Parmotrema louisianae (Hale) Hale

  72. 72(69) Rhizines dimorphous, often extending to the margins ………73

    Rhizines uniform, rarely extending to the margins ………74

  73. 73(72) Soralia marginal; medulla Pd+ orange, KC− (salazinic acid) or Pd−, KC+ red (norlobaridone) ……… ……… Parmotrema subsumptum (Nyl.) Hale

    Soralia laminal; medulla Pd−, KC− (fatty acids) ……… Parmotrema pilosum (Stizenb.) Krog & Swinscow

  74. 74(72) Upper cortex distinctly maculate ………75

    Upper cortex emaculate or faintly maculate ………76

  75. 75(74) Medulla UV+ (alectoronic acid, ±α-collatolic acid, ±gyrophoric acid) ……… Parmotrema lobulascens (J. Stein.) Hale

    Medulla UV− (gyrophoric acid and/or norlobaridone, ±norstictic acid)……… Parmotrema subschimperi (Hale) Hale

  76. 76(74) Thallus saxicolous ………77

    Thallus normally corticolous ………78

  77. 77(76) Medulla UV+ (alectoronic acid) ………Parmotrema poolii (C. W. Dodge) Krog & Swinscow

    Medulla UV−, Pd+ orange-red (fumarprotocetraric and protocetraric acids) ……… ……… Parmotrema pseudograyanum (Hale) Sérus.

  78. 78(76) Medulla Pd+ orange → red ………79

    Medulla Pd−; soralia Pd− or Pd+ yellow ………83

  79. 79(78) Protocetraric acid present ………80

    Protocetraric acid absent ………82

  80. 80(79) Medulla C+ rose, gyrophoric acid present ……… Parmotrema umbrosum (Krog & Swinscow) Krog & Swinscow

    Medulla C−, gyrophoric acid absent ………81

  81. 81(80) Cilia well developed; medulla UV+ (alectoronic or α-collatolic acid) or UV− (protolichesterinic acid) ……… ……… Parmotrema subarnoldii (Abbayes) Hale

    Cilia poorly developed, present only in the lobe axils; medulla UV− (±undetermined fatty acids) ……… ……… Parmotrema gardneri (C. W. Dodge) Sérus.

  82. 82(79) Stictic acid present ……… Parmotrema perlatum (Huds.) M. Choisy

    Salazinic acid present ……… Parmotrema cristiferum (Taylor) Hale

  83. 83(78) Soralia Pd+ sulphur yellow (psoromic acid)………Parmotrema direagens (Hale) Hale

    Soralia Pd− or at most Pd+ pale yellow (psoromic acid absent) ………84

  84. 84(83) Medulla UV+ (alectoronic acid)………Parmotrema poolii (Dodge) Krog & Swinscow

    Medulla UV− ………85

  85. 85(84) Medulla C− (norlobaridone and/or protolichesterinic acid)……… Parmotrema hababianum (Gyeln.) Hale

    Medulla C+ rose or red ………86

  86. 86(85) Lecanoric acid present ……… Parmotrema cooperi (Steiner & Zahlbr.) Sérus.

    Gyrophoric acid present ………87

  87. 87(86) Soralia often ciliate, soredia granular; fatty acids present ………Parmotrema lophogenum (Abbayes) Hale

    Soralia eciliate, soredia farinose; fatty acids absent………88

  88. 88(87) Norlobaridone present………Parmotrema indicum Hale

    Norlobaridone absent ……… Parmotrema sancti-angelii (Lynge) Hale

Key to the species of Punctelia Krog (9)

Upperside with laminal, punctiform pseudocyphellae. Rhizines simple. Medulla white except for an ochraceous, K+ purple pigment (skyrin) in some species. Apothecia with imperforate disc. Pycnoconidia unciform (rod-shaped with a single hook-shaped end), bifusiform, or filiform.

  1. 1 Soredia, isidia and phyllidia absent ………2

    Soredia, isidia, or phyllidia present ………3

  2. 2(1) Underside pale brown; lecanoric acid present ……… Punctelia semansiana (W. L. Culb. & C. F. Culb.) Krog

    Underside black; gyrophoric acid present ……… Punctelia subpraesignis (Nyl.) Krog

  3. 3(1) Isidia or phyllidia present, soredia absent ………4

    Isidia and phyllidia absent, soredia present ………5

  4. 4(3) Thallus with low, papilliform or sparingly branched isidia with a dull surface; always on rock ……… ………Punctelia punctilla (Hale) Krog

    Thallus with coralloid isidia or phyllidia with a glossy cortex; underside pale brown; lecanoric acid present; commonly on trees ……… Punctelia rudecta (Ach.) Krog

  5. 5(3) Medulla C+ rose or red, KC+ red ………6

    Medulla C−, KC−………8

  6. 6(5) Underside pale brown; medulla C+ red (lecanoric acid) ……… Punctelia subrudecta (Nyl.) Krog

    Underside black; medulla C+ rose (gyrophoric acid)………7

  7. 7(6) Upperside predominantly grey; mainly corticolous; widespread ……… Punctelia borreri (Sm.) Krog

    Upperside with a pronounced brown marginal zone; saxicolous in upper montane-alpine region; rare……… ……… Punctelia stictica (Duby) Krog

  8. 8(5) Underside pale brown; caperatic acid present ………Punctelia neutralis (Hale) Krog

    Underside black; undetermined fatty acids present……… Punctelia reddenda (Stirt.) Krog

Key to species of Xanthoparmelia (Vain.) Hale (29)

Lobes irregularly incised, truncate, or rounded, separate to imbricate, 0.1–8 mm wide, marginal cilia absent. Upperside pale yellowish green or brown. Medulla white to ochraceous. Underside pale to dark brown or black, rhizinate to the margin or with a bare marginal zone (or rarely without rhizines). Rhizines simple, often with pale, frayed tips. With or without isidia, without soredia and pseudocyphellae. Apothecia adnate to substipitate, disc imperforate. Pycnoconidia shortly bifusiform.

Saxicolous, often in high elevations at several thousand metres.

  1. 1 Isidia absent ………2

    Isidia present ………12

  2. 2(1) Underside brown ………3

    Underside black ………5

  3. 3(2) Lobes usually wider than 2 mm; medulla with fumarprotocetraric and/or protocetraric acid ………4

    Lobes linear-elongate, almost completely terete, 0.5–1.5 mm wide; medulla with salazinic acid and norstictic acid (trace); cortex with usnic acid ……… Xanthoparmelia cylindriloba M. D. E. Knox

  4. 4(3) Lobes imbricate, 0.8–4(–8) mm wide; medulla with fumarprotocetraric acid and associated substances; cortex with usnic acid ……… ………Xanthoparmelia phaeophana (Stirt.) Hale

    Lobes mainly adjacent, 2–4 mm wide; medulla with protocetraric acid; cortex with usnic acid ……… ……… Xanthoparmelia austroafricana (Stirt.) Hale

  5. 5(2) Thallus subcrustose, tightly adnate to the substratum; lobes 0.5–1 mm wide, reddish brown; norstictic acid present……… ……… Xanthoparmelia nakuruensis (Essl.) O. Blanco et al.

    Thallus foliose, loosely attached to the substratum ………6

  6. 6(5) Upperside distinctly and evenly maculate, pale yellow; protocetraric acid present; lobes imbricate, ascending, repeatedly branched, sublinear, slightly convex, 0.5–1.5 mm wide; medulla with protocetraric acid, ±fatty acid; cortex with usnic acid; below c. 2500 m alt. ……… . Xanthoparmelia hypoleia (Nyl.) Hale

    Upperside emaculate or at most maculate here and there; chemistry various, protocetraric acid absent; above c. 3000 m alt. ………7

  7. 7(6) Salazinic acid present. ………8

    Salazinic acid absent. ………9

  8. 8(7) Thallus pulvinate ………10

    Thallus not pulvinate, membranous, lobes sublinear, 2–4(–5) mm wide, contiguous to imbricate, emaculate, slightly to moderately rhizinate; cortex with usnic acid ……… . Xanthoparmelia tasmanica (Hook. f. & Taylor) Hale

  9. 9(7) Lobes up to 8 mm wide, white-maculate, rhizinate to the margins; cortex with usnic acid ……… ……… Xanthoparmelia africana Hale

    Lobes 0.8–2 mm wide, black rimmed, emaculate, sparsely to moderately rhizinate; cortex with usnic acid ……… ……… Xanthoparmelia salkiboensis Hale

  10. 10(8) Lobes sublinear, secondary laciniae lacking, 2–4(–5) mm wide, contiguous to imbricate, emaculate, sparsely rhizinate; medulla with fumarprotocetraric acid and associated substances; cortex with usnic acid ……… ……… Xanthoparmelia rogersii Elix & J. Johnst.

    Lobes 0.1–0.3 mm in the centre, peripherally 2–3(–4) mm wide, with a rhizine-free marginal zone at apices; medulla with different substances ………11

  11. 11(10) Medulla K+ red (norstictic acid); lobes plane or in part subterete, 0.1–2(–3) mm wide; cortex with usnic acid……… ……… Xanthoparmelia kiboensis (C. W. Dodge) Krog & Swinscow

    Medulla K− (fatty acids); lobes plane, 0.2–4 mm; cortex with usnic acid ………Xanthoparmelia atroventralis (Hale) Hale

  12. 12(l) Thallus adnate to appressed; lobes adjacent, normally < 1.5 mm wide (however, X. treurensis and X. verrucigera with wider lobes key out here)………13

    Thallus adnate to loosely attached; lobes often imbricate, normally > 1.5 mm wide (however, X. endochrysea with narrower lobes keys out here)………23

  13. 13(12) Underside black ………14

    Underside brown ………19

  14. 14(13) Stictic acid present ………15

    Stictic acid absent ………17

  15. 15(14) Lobes 0.2–0.8 mm wide, irregularly incised, with a narrow black margin; isidia globose, often bursting open, but not becoming sorediose; cortex with usnic acid ……… Xanthoparmelia congensis (J. Steiner) Hale

    Lobes wider than 1 mm, without black margin; isidia cylindrical ………16

  16. 16(15) Lobes 1–3 mm wide, subirregular, contiguous to imbricate; verrucigeric acid present; cortex with usnic acid ……… ………Xanthoparmelia verrucigera (Nyl.) Hale

    Lobes 2–5 mm wide, sublinear, contiguous; verrucigeric acid absent; cortex with usnic acid ……… ………Xanthoparmelia treurensis Hale et al.

  17. 17(14) Lobes sublinear, 1.8–4 mm wide, contiguous to densely imbricate, weakly white-maculate; isidia cylindrical, becoming dense and coralloid branched with age; salazinic acid present; cortex with usnic acid ……… ………Xanthoparmelia australasica D. J. Galloway

    Lobes 0.5–1.5 mm wide ………18

  18. 18(17) Thallus moderately to closely adnate, medium to dark brown; lobes irregularly incised, more or less imbricate, (0.5–)1–1.5 mm wide; isidia cylindrical, rarely clavate, simple or branched; PQ-4 and related substances of the ‘quintaria’ type I; medulla K+ red, Pd+ pale yellow; cortex with usnic acid ………Xanthoparmelia kenyana (Essl.) O. Blanco et al.

    Thallus adnate to appressed, pale yellow-green, darkening at the centre; lobes adjacent or somewhat overlapping, 0.7–1.3 mm, lobe ends irregularly incised; isida subglobose to shortly cylindrical, unbranched or rarely, sparingly branched; salazinic acid present; cortex with usnic acid ………Xanthoparmelia diadeta (Hale) Hale

  19. 19(13) Thallus yellowish grey or pale grey; cortex with atranorin ………20

    Thallus yellow-green; cortex with usnic acid ………21

  20. 20(19) Lobes deeply divided; isidia usually darker than the thallus; apothecia often numerous, laminal, 1–2 mm diam.; pycnoconidia weakly bifusiform, 5–7 μm long; medulla with lecanoric acid (C+ red) ……… Xanthoparmelia annexa (Kurok.) Elix

    Lobes irregularly incised, often black rimmed, more or less imbricate; isidia concolorous with the thallus, sometimes darker grey; mature apothecia and pycnidia not seen in material from Kenya; medulla with norlobaridone (KC+ purple), loxodin ……… ……… Xanthoparmelia subtortula (Hale) Elix

  21. 21(19) Isidia coarse, dissolving into agglomerates of corticate granules; medulla K+ yellow, Pd+ yellow-orange, stictic acid aggr.……… ……… Xanthoparmelia glomerulata Krog & Swinscow

    Isidia cylindrical, slender ………22

  22. 22(21) Medulla white, K−, Pd−, KC+ purple, norlobaridone ……… Xanthoparmelia amplexula (Stirt.) Elix & Johnston

    Medulla ochraceous, pigment K−; cortex with usnic acid; medulla with protocetraric acid, fumarprotocetraric acid (Pd+ orange-red) and two undetermined substances (trace amounts) ………Xanthoparmelia krogiae Hale & Elix

  23. 23(12) Underside black ………24

    Underside brown ………26

  24. 24(23) Stictic acid present ………Xanthoparmelia lusitana (Nyl.) Krog

    Stictic acid absent ………25

  25. 25(24) Isidia uniformly cylindrical; medulla K− (fatty acids) ……… Xanthoparmelia meruensis Krog & Swinscow

    Isidia cylindrical, semiglobular, claviform, or spatulate-lobulate; medulla K+ red (salazinic acid) ……… ……… Xanthoparmelia tinctina (Maheu & A. Gillet) Hale

  26. 26(23) Thallus adnate or tightly adnate on rock; medulla Pd+ pale orange ………27

    Thallus loosely attached; isidia mostly slender; medulla Pd+ yellow-orange or orange-red ………28

  27. 27(26) Thallus tightly adnate, lobes 0.7–1.3 mm wide, moderately isidiate; hypoprotocetraric acid present ……… ……… Xanthoparmelia endochrysea (Müll. Arg.) Hale

    Thallus adnate, lobes 2–3 mm wide; isidia coarse; hypoprotocetraric acid present ……… ……… Xanthoparmelia weberi (Hale) Hale

  28. 28(26) Medulla K+ pale brown, fumarprotocetraric acid present ………Xanthoparmelia subramigera (Gyeln.) Hale

    Medulla K+ red, salazinic acid present ………Xanthoparmelia mexicana (Gyeln.) Hale

Discussion

The key obviously contains some species with only a preliminary taxonomic status. Several recent papers by Kirika et al. (Kirika et al. Reference Kirika, Divakar, Crespo, Gatheri, Mugambi, Leavitt, Moncada and Lumbsch2016a, Reference Kirika, Divakar, Crespo, Mugambi, Orock, Leavitt, Gatheri and Lumbschb, Reference Kirika, Divakar, Crespo, Leavitt, Mugambi, Gatheri and Lumbschc, Reference Kirika, Divakar, Buaruang, Leavitt, Crespo, Gatheri, Mugambi, Benatti and Lumbsch2017a, Reference Kirika, Divakar, Leavitt, Buaruang, Crespo, Mugambi, Gatheri and Lumbschb, Reference Kirika, Divakar, Crespo and Lumbsch2019) contain valuable novelties; these have been revealed by the application of molecular genetic methods on East African lichens which emphasizes the importance of studying further tropical collections to clarify unanswered questions. The most important changes were necessary to determine the status of Pseudoparmelia species, most of which were recombined as Canoparmelia, Flavoparmelia, Parmelia, Parmotrema, Relicina or Xanthoparmelia. Parmotrema nyasense (C. W. Dodge) R. S. Egan comb. nov. is formally recombined in this publication. Confirmation of this change by molecular genetic analysis is necessary as soon as fresh collections are available. A new combination for Pseudoparmelia usambarensis (J. Steiner & Zahlbr.) Krog & Swinscow was incorrectly cited in Index Fungorum Partnership (2022) as ‘Parmotrema usambarense (J. Steiner & Zahlbr.) Buaruang et al. [as ‘usambarensis’], MycoKeys 28 [actually 23], 58 (2017)’, and incorrectly listed in Buaruang et al. (Reference Buaruang, Boonpragob, Mongkolsuk, Sangvichien, Vongshewarat, Polyiam, Rangsiruji, Saipunkaew, Naksuwankul and Kalb2017) as ‘Parmotrema usambarense (J. Steiner & Zahlbr.) Krog & Swinscow, Lichenologist 19, 424 (1987)’, since this refers to the publication of Pseudoparmelia usambarense (J. Steiner & Zahlbr.) Krog & Swinscow, as maintained here in the newly presented key. Several other taxa may change their taxonomic status as a result of further research. Some species treated earlier as synonyms (e.g. Pseudoparmelia caroliniana (Nyl.) Hale and P. concrescens (Vain.) Hale) according to the chemical concept of Swinscow & Krog (Reference Swinscow and Krog1988) are independently added to the key (cf. Culberson Reference Culberson1993). The chemical variety (2) of Flavoparmelia soredians sensu Swinscow & Krog (Reference Swinscow and Krog1988) may represent smaller specimens of F. caperata with narrower lobes, or another species; it has therefore been omitted from the key. In other supposedly related species (e.g. the apotheciate Parmotrema abessinicum and the sorediate P. hababianum) with similar chemical compositions, different hypotheses may be reached. Several earlier literature sources (e.g. Hale Reference Hale1974a, Reference Haleb, Reference Halec, Reference Haled; Elix et al. Reference Elix, Johnston and Vernon1986; Kurokawa Reference Kurokawa1994) need to be restudied to revise or reinstate the various taxonomic concepts (Egan et al. Reference Egan, Pérez-Pérez and Nash2016; Del-Prado et al. Reference Del-Prado, Buaruang, Lumbsch, Crespo and Divakar2019; Diederich & Ertz Reference Diederich and Ertz2020). Furthermore, the molecular genetic and regulatory background of the biosynthetic pathways must be better understood (cf. Singh et al. Reference Singh, Armaleo, Grande F and Schmitt2021) in order to explain chemotype diversity.

Some species indicated as Hypotrachyna sp. A and sp. B, Neofuscelia sp. A, Parmotrema sp. A and sp. B (Swinscow & Krog Reference Swinscow and Krog1988) or certain species mentioned in other publications (e.g. Kirika et al. Reference Kirika, Divakar, Crespo, Leavitt, Mugambi, Gatheri and Lumbsch2016c, Reference Kirika, Divakar, Crespo and Lumbsch2019) as existing but not yet formally described, will no doubt increase the number of species in the near future, but further fieldwork will most certainly result in an increased number of newly described species.

Lichenologically, Kenya is one of the best studied countries in Africa. The search word ‘Kenya’ in the database ‘Recent literature on lichens’ (Culberson et al. Reference Culberson, Egan, Esslinger, Hodkinson and Lendemer2022) resulted in 79 papers out of 52 174, while 645 papers were found for ‘tropical’ (563) + ‘tropics’ (82) or 805 for ‘Africa’. Thus c. 10% of publications from Africa originate from Kenyan material. However, discoveries of species new to science can be expected since tropical and African lichens are generally understudied.

Since our knowledge of lichenicolous fungi in East Africa is still limited (Farkas & Flakus Reference Farkas and Flakus2016; Suija et al. Reference Suija, Kaasalainen, Kirika and Rikkinen2018), research into possible host species is very important. The key presented here will support further field studies and the identification work that follows, and thus contribute to a better knowledge of both lichens and their lichenicolous fungi in Kenya and East Africa, as well as promote conservation studies and the practical use of bioactive lichen secondary metabolites.

Acknowledgements

The present work was supported by the National Research Development and Innovation Fund NKFI K 124341 and the Stipendium Hungaricum Scholarship (2020–2024). We express our special thanks to Prof. Mark R. D. Seaward (Bradford University, UK) for his advice and revision of the English text. The authors are also grateful to Dr László Lőkös (Hungarian Natural History Museum, Budapest) for reading the manuscript and for his useful advice.

Author ORCID

Edit Farkas, 0000-0002-5245-1079.

Competing Interests

The authors declare none.

Supplementary Material

To view Supplementary Material for this article, please visit https://doi.org/10.1017/S0024282922000299.

Footnotes

1 Throughout the key ‘horrescens complex’ refers to 3-methoxy-2,4-di-O-methylgyrophoric acid, 2,4-di-O-methylgyrophoric acid, gyrophoric acid, 5-O-methylhiascic acid, 4,5-di-O-methylhiascic acid, lecanoric acid, and 3-hydroxygyrophoric acids (Benatti Reference Benatti2012b).

References

Adler, MT (1992) Claves de los generos y las especies de Parmeliaceae (Lichenes, Ascomycotina) de la Provincia de Buenos Aires (Argentina) [Keys to the genera and species of Parmeliaceae (Lichenes, Ascomycotina) Buenos Aires Province (Argentina)]. Boletin de la Sociedad Argentina de Botanica 28, 1117.Google Scholar
Adler, MT (2014) Parmelioid lichens (Parmeliaceae, Ascomycota) of National Park Copo (Santiago del Estero Province, Argentina). Boletin de la Sociedad Argentina de Botanica 48, 387406.CrossRefGoogle Scholar
Alstrup, V and Aptroot, A (2005) Pyrenocarpous lichens from Tanzania and Kenya. Cryptogamie, Mycologie 26, 265271.Google Scholar
Alstrup, V and Christensen, SN (2006) New records of lichens with cyanobacteria from Tanzania and Kenya. Cryptogamie, Mycologie 27, 5768.Google Scholar
Alstrup, V, Aptroot, A, Divakar, PK, LaGreca, S and Tibell, L (2010) Lichens from Tanzania and Kenya III. Macrolichens and calicioid lichens. Cryptogamie, Mycologie 31, 333351.Google Scholar
Archer, AW, Elix, JA, Fischer, E, Killmann, D and Sérusiaux, E (2009) The lichen genus Pertusaria (Ascomycota) in Central Africa (Congo/Kivu, Rwanda and Burundi) and western Kenya. Nova Hedwigia 88, 309333.CrossRefGoogle Scholar
Arup, U, Ekman, S, Lindblom, L and Mattsson, JE (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25, 6171.CrossRefGoogle Scholar
Awasthi, DD (2007) A Compendium of the Macrolichens from India, Nepal and Sri Lanka. Dehra-Dun: Bishen Singh Mahendra Pal Singh.Google Scholar
Benatti, MN (2012 a) A review of the genus Bulbothrix Hale: the species with medullary norstictic or protocetraric acids. MycoKeys 2, 128.CrossRefGoogle Scholar
Benatti, MN (2012 b) A worldwide key for the genus Parmelinopsis Elix & Hale (Parmeliaceae; Lichenized Ascomycetes). Opuscula Philolichenum 11, 304312.Google Scholar
Benatti, MN (2013) A review of the genus Bulbothrix Hale: the isidiate, sorediate and pustulate species with medullary salazinic acid. Mycosphere 4, 130.CrossRefGoogle Scholar
Benatti, MN (2014) A review of the genus Bulbothrix Hale: the isidiate, lacinulate, sorediate and pustulate species with medullary gyrophoric, lecanoric and lobaric acids, together with a world key for the genus. Opuscula Philolichenum 13, 122154.Google Scholar
Bjelland, T, Bendiksby, M and Frisch, A (2017) Geographically disjunct phylogenetic lineages in Leptogium hibernicum reveal Leptogium krogiae sp. nov. from East Africa. Lichenologist 49, 239251.CrossRefGoogle Scholar
Blanco, O, Crespo, A, Elix, JA, Hawksworth, DL and Lumbsch, HT (2004) A molecular phylogeny and a new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon 53, 959975.CrossRefGoogle Scholar
Blanco, O, Crespo, A, Ree, RH and Lumbsch, HT (2006) Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Molecular Phylogenetics and Evolution 39, 5269.CrossRefGoogle ScholarPubMed
Buaruang, K, Boonpragob, K, Mongkolsuk, P, Sangvichien, E, Vongshewarat, K, Polyiam, W, Rangsiruji, A, Saipunkaew, W, Naksuwankul, K, Kalb, J, et al. (2017) A new checklist of lichenized fungi occurring in Thailand. MycoKeys 23, 191.CrossRefGoogle Scholar
Canêz, L and Marcelli, M (2010) The Punctelia microsticta-group (Parmeliaceae). Bryologist 113, 728738.CrossRefGoogle Scholar
Crespo, A, Lumbsch, HT, Mattsson, J-E, Blanco, O, Divakar, PK, Articus, K, Wiklund, E, Bawingan, PA and Wedin, M (2007) Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Molecular Phylogenetics and Evolution 44, 812824.CrossRefGoogle ScholarPubMed
Crespo, A, Kauff, F, Divakar, PK, del Prado, R, Pérez-Ortega, S, de Paz G, Amo, Ferencova, Z, Blanco, O, Roca-Valiente, B, Núñez-Zapata, , et al. (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59, 17351753.CrossRefGoogle Scholar
Crespo, A, Divakar, PK and Hawksworth, DL (2011) Generic concepts in parmelioid lichens, and the phylogenetic value of characters used in their circumscription. Lichenologist 43, 511535.CrossRefGoogle Scholar
Culberson, WL (1993) Review of Macrolichens of East Africa by T. D. V. Swinscow, H. Krog. Bryologist 96, 512.CrossRefGoogle Scholar
Culberson, WL, Egan, RS, Esslinger, TL, Hodkinson, BP and Lendemer, JC (2022) Recent literature on lichens. [WWW resource] URL https://nhm2.uio.no/lichens/rll.html. Presented on the Web by E. Timdal. First posted 14 April 1997, continuously updated [Accessed 25 January 2022].Google Scholar
Del-Prado, R, Buaruang, K, Lumbsch, HT, Crespo, A and Divakar, PK (2019) DNA sequence-based identification and barcoding of a morphologically highly plastic lichen forming fungal genus (Parmotrema, Parmeliaceae) from the tropics. Bryologist 122, 281291.CrossRefGoogle Scholar
Diederich, P and Ertz, D (2020) First checklist of lichens and lichenicolous fungi from Mauritius, with phylogenetic analyses and description of new taxa. Plant and Fungal Systematics 65, 1375.CrossRefGoogle Scholar
Divakar, PK and Upreti, DK (2005) Parmelioid Lichens in India (A Revisionary Study). Dehra Dun; Bishen Singh Mahendra Pal Singh.Google Scholar
Divakar, PK, Lumbsch, HT, Ferencova, Z, Del Prado, R and Crespo, A (2010) Remototrachyna, a newly recognized tropical lineage of lichens in the Hypotrachyna clade (Parmeliaceae, Ascomycota), originated in the Indian subcontinent. American Journal of Botany 97, 579590.CrossRefGoogle ScholarPubMed
Divakar, PK, Crespo, A, Núñez-Zapata, J, Flakus, A, Sipman, HJM, Elix, JA and Lumbsch, HT (2013) A molecular perspective on generic concepts in the Hypotrachyna clade (Parmeliaceae, Ascomycota). Phytotaxa 132, 2138.CrossRefGoogle Scholar
Egan, RS, Pérez-Pérez, RE and Nash, TH III (2016) Parmotrema in Mexico. Bibliotheca Lichenologica 110, 323425.Google Scholar
Elix, JA (1993) New species in the lichen family Parmeliaceae (Ascomycotina) from Australia. Mycotaxon 47, 101129.Google Scholar
Elix, JA, Johnston, J and Vernon, D (1986) Canoparmelia, Paraparmelia and Relicinopsis. Three new genera in the Parmeliaceae (lichenized Ascomycotina). Mycotaxon 27, 271282.Google Scholar
Farkas, E and Flakus, A (2016) Trichonectria calopadiicola sp. nov. (Hypocreales, Ascomycota): the second species of the family Bionectriaceae parasitic on foliicolous lichens discovered in Tanzania. Phytotaxa 278, 281286.Google Scholar
Grewe, F, Ametrano, C, Widhelm, TJ, Leavitt, SD, Distefano, I, Polyiam, W, Pizarro, D, Wedin, M, Crespo, A, Divakar, PK, et al. (2020) Using target enrichment sequencing to study the higher-level phylogeny of the largest lichen-forming fungi family: Parmeliaceae (Ascomycota). IMA Fungus 11, 27.CrossRefGoogle Scholar
Hale, ME (1974 a) Bulbothrix, Parmelina, Relicina, and Xanthoparmelia, four new genera in the Parmeliaceae. Phytologia 28, 479490.Google Scholar
Hale, ME (1974 b) Delimitation of the lichen genus Hypotrachyna (Vainio) Hale. Phytologia 28, 340342.Google Scholar
Hale, ME (1974 c) New combinations in the lichen genus Parmotrema Massalongo. Phytologia 28, 334339.Google Scholar
Hale, ME (1974 d) New combinations in the lichen genus Pseudoparmelia Lynge. Phytologia 28, 188191.Google Scholar
Hale, ME (1990) A synopsis of the lichen genus Xanthoparmelia (Vainio) Hale (Ascomycotina, Parmeliaceae). Smithsonian Contributions to Botany 74, 1250.CrossRefGoogle Scholar
Index Fungorum Partnership (2022) Index Fungorum. [WWW resource] URL http://www.indexfungorum.org [Accessed 25 January 2022].Google Scholar
Kantelinen, A, Hyvärinen, M-T, Kirika, PM and Myllys, L (2021) Four new Micarea species from the montane cloud forests of Taita Hills, Kenya. Lichenologist 53, 8194.CrossRefGoogle Scholar
Kirika, PM and Lumbsch, HT (2021) An overview of lichen diversity and lichenicolous fungi in Kenya (East Africa). In Program and Abstract Book IAL9 (International Association for Lichenology 9th Symposium) – online, p. 107. URL https://doity.com.br/ial9/blog/ial-program-bookGoogle Scholar
Kirika, P, Mugambi, G, Lücking, R and Lumbsch, HT (2012) New records of lichen-forming fungi from Kenya. Journal of East African Natural History 101, 7398.CrossRefGoogle Scholar
Kirika, PM, Divakar, PK, Crespo, A, Gatheri, GW, Mugambi, G, Leavitt, SD, Moncada, B and Lumbsch, HT (2016 a) Molecular data show that Hypotrachyna sorocheila (Parmeliaceae) is not monophyletic. Bryologist 119, 172180.CrossRefGoogle Scholar
Kirika, PM, Divakar, PK, Crespo, A, Mugambi, G, Orock, EA, Leavitt, SD, Gatheri, GW and Lumbsch, HT (2016 b) Phylogenetic studies uncover a predominantly African lineage in a widely distributed lichen-forming fungal species. Mycokeys 14, 116.Google Scholar
Kirika, PM, Divakar, PK, Crespo, A, Leavitt, SD, Mugambi, G, Gatheri, GW and Lumbsch, HT (2016 c) Polyphyly of the genus Canoparmelia – uncovering incongruences between phenotype-based classification and molecular phylogeny within lichenized Ascomycota (Parmeliaceae). Phytotaxa 289, 3648.CrossRefGoogle Scholar
Kirika, PM, Divakar, PK, Buaruang, K, Leavitt, SD, Crespo, A, Gatheri, GW, Mugambi, G, Benatti, MN and Lumbsch, HT (2017 a) Molecular phylogenetic studies unmask overlooked diversity in the tropical lichenized fungal genus Bulbothrix s. l. (Parmeliaceae, Ascomycota). Botanical Journal of the Linnean Society 184, 387399.CrossRefGoogle Scholar
Kirika, PM, Divakar, PK, Leavitt, SD, Buaruang, K, Crespo, A, Mugambi, G, Gatheri, GW and Lumbsch, HT (2017 b) The genus Relicinopsis is nested within Relicina (Parmeliaceae, Ascomycota). Lichenologist 49, 189–187.CrossRefGoogle Scholar
Kirika, PM, Divakar, PK, Crespo, A and Lumbsch, HT (2019) Molecular and phenotypical studies on species diversity of Hypotrachyna (Parmeliaceae, Ascomycota) in Kenya, East Africa. Bryologist 122, 140150.CrossRefGoogle Scholar
Kirk, PM, Cannon, PF, Minter, DW and Stalpers, JA (2008) Ainsworth & Bisby's Dictionary of the Fungi, 10th Edn. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Krog, H and Swinscow, TDV (1987) New species and new combinations in some parmelioid lichen genera, with special emphasis on East African taxa. Lichenologist 19, 419431.CrossRefGoogle Scholar
Kukwa, M, Bach, K, Sipman, HJM and Flakus, A (2012) Thirty-six species of the lichen genus Parmotrema (Lecanorales, Ascomycota) new to Bolivia. Polish Botanical Journal 57, 243257.Google Scholar
Kurokawa, S (1994) Bulborrhizina africana, a new genus and species of the Parmeliaceae. Acta Botanica Fennica 150, 105107.Google Scholar
Leavitt, SD, Kirika, PM, Amo de Paz, G, Huang, J-P, Hur, J-S, Elix, JA, Grewe, F, Divakar, PK and Lumbsch, HT (2018) Assessing phylogeny and historical biogeography of the largest genus of lichen-forming fungi, Xanthoparmelia (Parmeliaceae, Ascomycota). Lichenologist 50, 299312.CrossRefGoogle Scholar
Lücking, R and Timdal, E (2016) New species of Dictyonema and Cyphellostereum (lichenized Basidiomycota: Hygrophoraceae) from tropical Africa and the Indian Ocean, dedicated to the late Hildur Krog. Willdenowia 46, 191199.CrossRefGoogle Scholar
Molnár, K and Farkas, E (2010) Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift für Naturforschung C 65, 157173.CrossRefGoogle ScholarPubMed
Molnár, K and Farkas, E (2011) Depsides and depsidones in populations of the lichen Hypogymnia physodes and its genetic diversity. Annales Botanici Fennici 48, 473482.CrossRefGoogle Scholar
Muhoro, AM and Farkas, (2021) Insecticidal and antiprotozoal properties of lichen secondary metabolites on insect vectors and their transmitted protozoal diseases to humans. Diversity 13, 342.CrossRefGoogle Scholar
Nguyen, K-H, Chollet-Krugler, M, Gouault, N and Tomasi, S (2013) UV-protectant metabolites from lichens and their symbiotic partners. Natural Product Reports 30, 14901508.CrossRefGoogle ScholarPubMed
Petrova, K, Kello, M, Kuruc, T, Backorova, M, Petrovova, E, Vilkova, M, Goga, M, Rucova, D, Backor, M and Mojzis, J (2021) Potential effect of Pseudevernia furfuracea (L.) Zopf extract and metabolite physodic acid on tumour microenvironment modulation in MCF-10A cells. Biomolecules 11, 420.CrossRefGoogle ScholarPubMed
Singh, G, Armaleo, D, Grande F, Dal and Schmitt, I (2021) Depside and depsidone synthesis in lichenized fungi comes into focus through a genome-wide comparison of the olivetoric acid and physodic acid chemotypes of Pseudevernia furfuracea. Biomolecules 11, 1445.CrossRefGoogle ScholarPubMed
Sipman, HJM, Elix, JA and Nash, TH III (2009) Hypotrachyna (Parmeliaceae, lichenized fungi). Flora Neotropica Monograph 104, 1176.Google Scholar
Smith, CW, Aptroot, A, Coppins, BJ, Fletcher, A, Gilbert, OL, James, PW and Wolseley, PA (eds) (2009) The Lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Spielmann, AA and Marcelli, MP (2020) Type studies on Parmotrema (Parmeliaceae, Ascomycota) with salazinic acid. Plant and Fungal Systematics 65, 403508.CrossRefGoogle Scholar
Staiger, B and Kalb, K (1995) Haematomma-studien. I. Die Flechtengattung Haematomma. Bibliotheca Lichenologica 59, 1198.Google Scholar
Suija, A, Kaasalainen, U, Kirika, PM and Rikkinen, J (2018) Taitaia, a novel lichenicolous fungus in tropical montane forests in Kenya (East Africa). Lichenologist 50, 173184.CrossRefGoogle Scholar
Swinscow, TDV and Krog, H (1988) Macrolichens of East Africa. London: British Museum (Natural History).Google Scholar
Thell, A, Crespo, A, Divakar, PK, Kärnefelt, I, Leavitt, SD, Lumbsch, HT and Seaward, MRD (2012) A review of the lichen family Parmeliaceae. Nordic Journal of Botany 30, 641664.CrossRefGoogle Scholar
Thiers, B (2022) (continuously updated) Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden's Virtual Herbarium. [WWW resource] URL http://sweetgum.nybg.org/science/ih/Google Scholar
Figure 0

Fig. 1. Parts of a foliose thallus indicated by arrows. A, upper and lower surface, lamina, lobe margin (Flavoparmelia caperata, A. M. Muhoro 21/01). B, appendages on the thallus: cilia, rhizines (Parmotrema ultralucens, VBI 2217). Scales: A = 1 mm; B = 0.5 mm. In colour online.

Figure 1

Fig. 2. Appendages on the thallus. A, bulbate cilia indicated by arrows (Bulbothrix isidiza, VBI 1691). B, branched rhizine (Parmotrema ultralucens, VBI 2217). Scales: A & B = 0.5 mm. In colour online.

Figure 2

Fig. 3. Lower surface of the thallus (Flavoparmelia caperata, A. M. Muhoro 21/01). A, paler zone at the margin with pale rhizines. B, inner dark rhizines. Scales: A & B = 0.5 mm. In colour online.

Figure 3

Fig. 4. Laminal isidia. A, semiglobular to cylindrical isidia often with brown tips, mostly simple (Bulbothrix isidiza, VBI 1691). B, cylindrical and claviform isidia (Hypotrachyna vexans, VBI 1741). C, cylindrical granular isidia with brown tips (Parmelinella schimperiana, VBI 2309). D, subglobose to cylindrical or inflated isidia, simple or branched (Parmotrema tinctorum, VBI 4917). Scales: A‒D = 0.2 mm. In colour online.

Figure 4

Fig. 5. Morphological details (Flavopunctelia flaventior, VBI 2321). A, laminal pseudocyphellae. B, marginal linear soralia. Scales: A & B = 0.5 mm. In colour online.

Figure 5

Fig. 6. Laminal punctiform soralia. A, Canoparmelia texana (VBI 2308). B, Parmotrema sp. (A. M. Muhoro 20/01). Scales: A = 0.5 mm; B = 1 mm. In colour online.