Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-06T18:25:26.119Z Has data issue: false hasContentIssue false

Zero-dimensional energetics scaling models for z-pinch-driven hohlraums

Published online by Cambridge University Press:  25 March 2002

M.E. CUNEO
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185-1193, USA
R.A. VESEY
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185-1193, USA
J.H. HAMMER
Affiliation:
Livermore National Laboratory, Livermore, CA 94551, USA
J.L. PORTER
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185-1193, USA
L.E. RUGGLES
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185-1193, USA
W.W. SIMPSON
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185-1193, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Wire array z pinches on the Z accelerator provide the most intense laboratory source of soft X rays in the world. The unique combination of a near-Planckian radiation source with high X-ray production efficiency (10 to 15% wall plug), large X-ray powers and energies (>100 TW, ≥0.8 MJ in 6 ns to 7 ns), large characteristic hohlraum volumes (0.5 to >10 cm3), long pulse lengths (5 to 20 ns), and low capital cost (<$50–$100/radiated Joule) may make z pinches a good match to the requirements for driving high-yield scale (>200 MJ yield) ICF capsules with adequate radiation symmetry and margin. The z-pinch-driven hohlraum approach of Hammer et al. (1999) may provide a conservative and robust solution to the requirements for high yield, and is currently being studied on the Z accelerator. This paper describes a multiple-region, 0-D hohlraum energetics model for z-pinch-driven hohlraums in four configurations. We observe consistency between the model and the measured X-ray powers and hohlraum wall temperatures to within ±20% in X-ray flux, for the four configurations. The scaling of pinch energy and radiation-driven anode-cathode gap closure with drive current are also examined.

Type
Z-PINCH ARTICLES
Copyright
2001 Cambridge University Press