Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-06T14:04:33.552Z Has data issue: false hasContentIssue false

A review of X-ray laser development at Rutherford Appleton Laboratory

Published online by Cambridge University Press:  13 November 2002

G.J. TALLENTS
Affiliation:
Department of Physics, University of York, York YO10 5DD, UK
Y. ABOU-ALI
Affiliation:
Department of Physics, University of York, York YO10 5DD, UK
M. EDWARDS
Affiliation:
Department of Physics, University of York, York YO10 5DD, UK
R. KING
Affiliation:
Department of Physics, University of York, York YO10 5DD, UK
G.J. PERT
Affiliation:
Department of Physics, University of York, York YO10 5DD, UK
S.J. PESTEHE
Affiliation:
Department of Physics, University of York, York YO10 5DD, UK
F. STRATI
Affiliation:
Department of Physics, University of York, York YO10 5DD, UK
C.L.S. LEWIS
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK
R. KEENAN
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK
S. TOPPING
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK
A. KLISNICK
Affiliation:
Laboratoire de Spectroscopie Atomique et Ionique, Universite Paris-Sud, 91405 Orsay, France
O. GUILBAUD
Affiliation:
Laboratoire de Spectroscopie Atomique et Ionique, Universite Paris-Sud, 91405 Orsay, France
D. ROS
Affiliation:
Laboratoire de Spectroscopie Atomique et Ionique, Universite Paris-Sud, 91405 Orsay, France
R. CLARKE
Affiliation:
Central Laser Facility, Rutherford Appleton Laboratory, Chilton OX11 OQX, UK
M. NOTLEY
Affiliation:
Central Laser Facility, Rutherford Appleton Laboratory, Chilton OX11 OQX, UK
D. NEELY
Affiliation:
Central Laser Facility, Rutherford Appleton Laboratory, Chilton OX11 OQX, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent experiments undertaken at the Rutherford Appleton Laboratory to produce X-ray lasing over the 5–30 nm wavelength range are reviewed. The efficiency of lasing is optimized when the main pumping pulse interacts with a preformed plasma. Experiments using double 75-ps pulses and picosecond pulses superimposed on 300-ps background pulses are described. The use of travelling wave pumping with the approximately picosecond pulse experiments is necessary as the gain duration becomes comparable to the time for the X-ray laser pulse to propagate along the target length. Results from a model taking account of laser saturation and deviations from the speed of light c of the travelling wave and X-ray laser group velocity are presented. We show that X-ray laser pulses as short as 2–3 ps can be produced with optical pumping pulses of ≈1-ps.

Type
Research Article
Copyright
© 2002 Cambridge University Press