Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-02-07T04:48:18.107Z Has data issue: false hasContentIssue false

Resonant principle for operation of energy recuperator for a magnetized electron beam: A numerical simulation

Published online by Cambridge University Press:  13 November 2002

A.V. ARZHANNIKOV
Affiliation:
Budker Institute of Nuclear Physics (INP) SB RAS, Novosibirsk, 630090, Russia
V.T. ASTRELIN
Affiliation:
Budker Institute of Nuclear Physics (INP) SB RAS, Novosibirsk, 630090, Russia
V.S. KOIDAN
Affiliation:
Budker Institute of Nuclear Physics (INP) SB RAS, Novosibirsk, 630090, Russia
S.L. SINITSKY
Affiliation:
Budker Institute of Nuclear Physics (INP) SB RAS, Novosibirsk, 630090, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The problem of energy recuperator for a high current sheet electron beam used to drive a millimeter-waves generator is considered. There are two main obstacles to solving the problem. The first one is the presence of a magnetic field guiding beam electrons. The second obstacle is significant energy and angular spreads of the electrons in the waste beam. To overcome these obstacles, we suggest a novel scheme of a recuperator. The main idea of the proposed scheme is the use of a decelerating electrical field together with a guiding magnetic field that has longitudinal and spatial periodic transverse components. Resonance of a bounce electron motion with the cyclotron motion in this field gives a strong increase in the Larmour radius of electrons with the energy in a narrow interval. The decelerated electrons with the resonance energy fall away from the beam and are absorbed by a collector at a proper potential. It is shown that efficiency of this novel scheme can reach about 80% even if the sheet beam has a broad energy spectrum.

Type
Research Article
Copyright
© 2002 Cambridge University Press