Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-11T16:40:38.980Z Has data issue: false hasContentIssue false

Modeling of supersonic jet formation in conical wire array Z-pinches

Published online by Cambridge University Press:  13 November 2002

A. CIARDI
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, UK
S.V. LEBEDEV
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, UK
J.P. CHITTENDEN
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, UK
S.N. BLAND
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supersonic jet production in conical wire array Z-pinches is modeled using a two-dimensional (2D) resistive magneto-hydrodynamic (MHD) code. In conical wire arrays, the converging plasma ablated from the wires stagnates on axis, forming a standing conical shock which redirects and collimates the flow into a jet. As the jet exits the collimator shock, it is radiatively cooled and accelerated by the steep thermal gradients present. Purely hydrodynamic simulations using conditions relevant to the MAGPIE facility show good agreement with the experiments (Lebedev et al., 2002), indicating that narrow, high Mach number (M ∼ 20), radiatively cooled tungsten jets of astrophysical relevance can be obtained. To investigate the effects of lower radiative cooling on jet collimation, we modeled an aluminum conical wire array. When radiative losses are less significant, lower Mach number (M ∼ 10), less collimated jets are obtained. MHD simulations relevant to the “Z” facility were carried out to investigate the scaling of jet parameters. The resulting hypersonic (M ∼ 40), high density jets should allow the investigation of a wider range of astrophysical jet conditions.

Type
Research Article
Copyright
© 2002 Cambridge University Press