Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-06T12:09:21.776Z Has data issue: false hasContentIssue false

The K-shell radiation of a double gas puff z-pinch with an axial magnetic field

Published online by Cambridge University Press:  21 August 2003

S.A. CHAIKOVSKY
Affiliation:
High Current Electronics Institute, Tomsk, Russia
A.Yu. LABETSKY
Affiliation:
High Current Electronics Institute, Tomsk, Russia
V.I. ORESHKIN
Affiliation:
High Current Electronics Institute, Tomsk, Russia
A.V. SHISHLOV
Affiliation:
High Current Electronics Institute, Tomsk, Russia
R.B. BAKSHT
Affiliation:
High Current Electronics Institute, Tomsk, Russia
A.V. FEDUNIN
Affiliation:
High Current Electronics Institute, Tomsk, Russia
A.G. ROUSSKIKH
Affiliation:
High Current Electronics Institute, Tomsk, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A double shell z-pinch with an axial magnetic field is considered as a K-shell plasma radiation source. One-dimensional radiation-hydrodynamics calculations performed suggest that this scheme holds promise for the production of the K-shell radiation of krypton (hν ≈ 12–17 keV). As a first step in verifying the advantages of this scheme, experiments have been performed to optimize a neon double-shell gas puff with an axial magnetic yield for the K-shell yield and power. The experiments show that the application of an axial magnetic field makes it possible to increase the K-shell radiation power and reduce the shot-to-shot spread in the K-shell yield. Comparisons between the experiments and modeling are made and show good agreement.

Type
Research Article
Copyright
© 2003 Cambridge University Press