Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-06T19:46:51.349Z Has data issue: false hasContentIssue false

Flyer acceleration experiments using a KrF laser system with a long pulse duration and pressure and thickness of isobaric zone induced in impacted materials

Published online by Cambridge University Press:  14 May 2002

T. KADONO
Affiliation:
National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
M. YOSHIDA
Affiliation:
National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
N.K. MITANI
Affiliation:
National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
T. MATSUMURA
Affiliation:
National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
E. TAKAHASHI
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305-8568, Japan
I. MATSUSHIMA
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Y. OWADANO
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Y. SASATANI
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan Faculty of Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
K. FUJITA
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan Faculty of Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
N. OZAKI
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan Faculty of Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
K. TAKAMATSU
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan Faculty of Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
M. NAKANO
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan Faculty of Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
K.A. TANAKA
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan Faculty of Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
H. TAKENAKA
Affiliation:
NTT Advanced Technology Corporation, 3-9-11 Midori, Musashino, Tokyo 180-8585, Japan
H. ITO
Affiliation:
NTT Advanced Technology Corporation, 3-9-11 Midori, Musashino, Tokyo 180-8585, Japan
K. KONDO
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Flyer acceleration experiments are carried out using a KrF laser system with a pulse duration of 10–15 ns and an intensity of ∼1.0 × 1013 W/cm2. Three-layered targets (aluminum–polyimide–tantalum) are used. First, an average velocity of laser-driven tantalum flyers with a thickness of 4 and 8 μm is estimated. Then, in a collision of a flyer with a copper layer attached to a diamond plate, we measure a transit time of a shock wave in the diamond. The impact velocity is estimated based on the transit time and a numerical simulation. This numerical simulation also shows that the initial peak pressure caused by the impact of a 4-μm-thick flyer is kept at 11 Mbar for 12–13 μm in thickness. Finally, whether this thickness is enough for EOS measurements is discussed.

Type
Research Article
Copyright
© 2001 Cambridge University Press