Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-11T20:33:58.179Z Has data issue: false hasContentIssue false

2D numerical modeling of pulsed plasma acceleration by a magnetic field

Published online by Cambridge University Press:  07 March 2001

A.A. KONDRATYEV
Affiliation:
Russian Federal Nuclear Center—All-Russia Institute of Technical Physics (RFNC VNIITF), P.O. Box 245, Snezhinsk, Chelyabinsk region, 456770 Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pulsed plasma guns are used to obtain high-velocity (107–108 cm/s) plasma flows. Their performance is restricted by an instability of the plasma acceleration by a magnetic field. This paper presents results of a 2D numerical study of plasma dynamics in the plasma gun. The ZENIT-2D code solving the magnetohydrodynamic (MHD) equations on a fixed Eulerian mesh is used. The plasma parameters and geometry are chosen to be close to the parameters of the MK-200 installation (Sidnev et al., 1983). The influence of the initial distribution of a neutral gas on accelerator performance is investigated. A brief description of the code and details of the simulations are presented. It is shown that the instability of acceleration leads to turbulent mixing of the plasma and magnetic field and, correspondingly, to a broader current channel than that predicted by the classical diffusion with the Spitzer conductivity. Numerical results are compared with experimental data (Bakhtin & Zhitlukhin, 1998) displaying a good qualitative agreement.

Type
ZABABAKHIN SPECIAL PAPERS
Copyright
© 2000 Cambridge University Press