Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-11T01:50:53.350Z Has data issue: false hasContentIssue false

Litterfall production and fluvial export in headwater catchments of the southern Amazon

Published online by Cambridge University Press:  24 April 2007

Evandro Carlos Selva
Affiliation:
Departamento de Solos, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, MT, Brazil
Eduardo Guimarães Couto
Affiliation:
Departamento de Solos, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, MT, Brazil
Mark S. Johnson
Affiliation:
Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14850, USA
Johannes Lehmann
Affiliation:
Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14850, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Resolving the carbon (C) balance in the Amazonian forest depends on an improved quantification of production and losses of particulate C from forested landscapes via stream export. The main goal of this work was to quantify litterfall, the lateral movement of litter, and the export of coarse organic particulate matter (>2 mm) in four small watersheds (1–2 ha) under native forest in southern Amazonia near Juruena, Mato Grosso, Brazil (10°25′S, 58°46′W). Mean litterfall production was 11.8 Mg ha−1 y−1 (5.7 Mg C ha−1 y−1). Litterfall showed strong seasonality, with the highest deposition in the driest months of the year. About two times more C per month was deposited on the forest floor during the 6-mo dry season (0.65 Mg C ha−1 mo−1) compared with the rainy season (0.3 Mg C ha−1 mo−1). The measured C concentration of the litterfall samples was significantly greater in the dry season than in the rainy season (49% vs. 46%). The lateral movement of litter increased from the plateau (upper landscape position) towards the riparian zone. However, the trend in C concentration of laterally transported litter samples was the opposite, being highest on the plateau (44%) and lowest in the riparian zone (42%). Stream-water exports of particulate C were positively correlated with streamflow, increasing in the rainiest months. The export of particulate C in streamflow was found to be very small (less than 1%) in relation to the amount of litterfall produced.

Type
Research Article
Copyright
2007 Cambridge University Press