Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-02-11T21:02:49.716Z Has data issue: false hasContentIssue false

Overview of the biodiversity and distribution of the Class Homoscleromorpha in the Tropical Western Atlantic

Published online by Cambridge University Press:  20 May 2015

Celso Domingos
Affiliation:
Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/no, São Cristóvão, CEP 20940-040 Rio de Janeiro, Brasil
Anaíra Lage
Affiliation:
Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/no, São Cristóvão, CEP 20940-040 Rio de Janeiro, Brasil
Guilherme Muricy*
Affiliation:
Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/no, São Cristóvão, CEP 20940-040 Rio de Janeiro, Brasil
*
Correspondence should be addressed to:G. Muricy, Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/no, São Cristóvão. CEP 20940-040 Rio de Janeiro, Brasil email: muricy@mn.ufrj.br
Rights & Permissions [Opens in a new window]

Abstract

In this study we revise the current knowledge on the biodiversity and distribution of the Class Homoscleromorpha in the Tropical Western Atlantic (TWA). Twenty-seven species are currently recognized in the TWA, belonging to the genera Oscarella (O. nathaliae), Plakortis (P. angulospiculatus, P. dariae, P. edwardsi, P. halichondrioides, P. insularis, P. microrhabdifera, P. myrae, P. petrupaulensis, P. potiguarensis, P. simplex, P. spinalis, P. zyggompha), Plakinastrella (P. globularis, P. microspiculifera, P. onkodes, P. stinapa), Plakina (P. coerulea, P. elisa, P. jamaicensis, P. monolopha, P. tetralopha, P. trilopha, P. versatilis), Corticium (C. diamantense, C. quadripartitum) and Tetralophophora (T. mesoamericana). Three of these ‘species’ are cosmopolitan and in fact represent complexes of cryptic species: Plakina monolopha, P. trilopha and Plakortis simplex. All other 24 species reported are TWA endemics. Only four species are found both in the Caribbean and in Brazil: Plakortis angulospiculatus, P. halichondrioides, Plakinastrella microspiculifera and P. onkodes, but these may also be species complexes. Seven species are Brazilian endemics: Plakina coerulea, Plakinastrella globularis, Plakortis insularis, P. microrhabdifera, P. petrupaulensis, P. potiguarensis and P. spinalis. Thirteen species are restricted to the Tropical North-western Atlantic: Corticium diamantense, C. quadripartitum, Oscarella nathaliae, Plakina elisa, P. jamaicensis, P. tetralopha, P. versatilis, Plakortis dariae, P. edwardsi, P. myrae, P. zyggompha, Plakinastrella stinapa and Tetralophophora mesoamericana. The Greater Antilles is the richest ecoregion, with 12 species reported. Only the Guianan ecoregion has no records of Homoscleromorpha. Several undescribed species of Oscarella and Plakina are also known from the TWA. We estimate that the biodiversity of Homoscleromorpha in the TWA is at least twice as high than currently known.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

INTRODUCTION

The Class Homoscleromorpha Bergquist, Reference Bergquist1978 is the smallest class of sponges, with 103 species classified in a single order (Homosclerophorida Dendy, Reference Dendy1905) and two families (Oscarellidae von Lendenfeld, Reference von Lendenfeld1887 and Plakinidae Schulze, Reference Schulze1880; cf. van Soest et al., Reference van Soest, Boury-Esnault, Hooper, Rützler, de Voogd, Alvarez de Glasby, Hajdu, Pisera, Manconi, Schoenberg, Janussen, Tabachnick, Klautau, Picton, Kelly, Vacelet, Dohrmann, Díaz and Cárdenas2015). Only one genus is currently accepted in family Oscarellidae: Oscarella Vosmaer, Reference Vosmaer1884, without skeleton. Another aspiculate genus, Pseudocorticium Boury-Esnault et al., Reference Boury-Esnault, Muricy, Gallissian and Vacelet1995, was recently synonymized to Oscarella by Gazave et al. (Reference Gazave, Lavrov, Cabrol, Renard, Rocher, Vacelet, Adamska, Borchiellini and Ereskovsky2013). Six genera are valid in family Plakinidae: Plakortis Schulze, Reference Schulze1880, Plakinastrella Schulze, Reference Schulze1880, Plakina Schulze, Reference Schulze1880, Corticium Schmidt, Reference Schmidt1862, Placinolopha Topsent, Reference Topsent1897 and Tetralophophora Rützler et al., Reference Rützler, Piantoni, van Soest and Diaz2014, all with a skeleton composed of siliceous spicules (diods, triods, smooth calthrops, lophose calthrops, candelabra and microrhabds; Díaz & van Soest, Reference Díaz, van Soest, van Soest, van Kempen and Braekman1994; Muricy & Díaz, Reference Muricy, Díaz, Hooper and van Soest2002; Gazave et al., Reference Gazave, Lapébie, Renard, Vacelet, Rocher, Ereskovsky, Lavrov and Borchiellini2010, Reference Gazave, Lavrov, Cabrol, Renard, Rocher, Vacelet, Adamska, Borchiellini and Ereskovsky2013; Rützler et al., Reference Rützler, Piantoni, van Soest and Diaz2014).

In recent years, the Homoscleromorpha has gained special attention due to its relevant position at the basis of the metazoan phylogenetic tree. The presence of a basement membrane made of type IV collagen is considered a synapomorphy of the Eumetazoa and Homoscleromorpha that is not shared with other sponges (Boute et al., Reference Boute, Exposito, Boury-Esnault, Vacelet, Noro, Miyazaki, Yoshizato and Garrone1996). Their cinctoblastula larvae is similar to a presumed step on metazoan evolution (Nielsen, Reference Nielsen2008; Ereskovsky et al., Reference Ereskovsky, Borchiellini, Gazave, Ivanisevic, Lapébie, Perez, Renard and Vacelet2009a). Like all eumetazoans but unlike most other sponges, the spermatozoans of homosclerophorids have an acrosome; furthermore, and also in contrast to other sponges, the spermatogenesis is asynchronous inside spermatocysts (Ereskovsky et al., Reference Ereskovsky, Borchiellini, Gazave, Ivanisevic, Lapébie, Perez, Renard and Vacelet2009a). Recently, phylogenetic studies with different molecular markers suggested that the Homoscleromorpha should be separated from other sponges at class or even at phylum level (Borchiellini et al., Reference Borchiellini, Chombard, Manuel, Alivon, Vacelet and Boury-Esnault2004; Erpenbeck & Wörheide, Reference Erpenbeck and Wörheide2007; Phillippe et al., Reference Philippe, Derelle, Lopez, Pick, Borchiellini, Boury-Esnault, Vacelet, Renard, Houliston, Quéinnec, Silva, Wincker, Le Guyader, Leys, Jackson, Schreiber, Erpenbeck, Morgenstern, Worheide and Manuel2009; Gazave et al., Reference Gazave, Lapébie, Ereskovsky, Vacelet, Renard, Cárdenas and Borchiellini2012; Nielsen, Reference Nielsen2012).

The class Homoscleromorpha is cosmopolitan, occurring from the equator to the poles and from the intertidal to the deep sea. However, despite its importance, little is known about its diversity and distribution in most regions of the world. Only in the Mediterranean Sea has the group been recently revised, with 23 species currently accepted (Ereskovsky et al., Reference Ereskovsky, Ivanisevic and Perez2009b; Pérez et al., Reference Pérez, Ivanisevic, Dubois, Pedel, Thomas, Tokina and Ereskovsky2011; Pansini et al., Reference Pansini, Manconi and Pronzato2011). In this paper we investigate all records of Homoscleromorpha species from the Tropical Western Atlantic (TWA) and present an overview of their taxonomy, biodiversity and distribution to put in evidence taxonomic problems, distribution patterns and diversity hotspots of Homoscleromorpha in the TWA.

MATERIALS AND METHODS

The Tropical Western Atlantic was divided by Spalding et al. (Reference Spalding, Fox, Allen, Davidson, Ferdaña, Finlayson, Halpern, Jorge, Lombana, Lourie, Martin, McManus, Molnar, Recchia and Robertson2007) into 16 ecoregions and three provinces: Tropical North-western Atlantic, North Brazil Shelf, and Tropical South-western Atlantic. We followed this division and also included in our study area the Warm Temperate North-west Atlantic Province, with Carolinian and Northern Gulf of Mexico ecoregions (Figure 1). Based on a literature survey, the distribution of each species was mapped and compared with these ecoregions.

Fig. 1. Study area, according to the division of the Western Atlantic Ocean in realms, provinces and ecoregions of Spalding et al. (Reference Spalding, Fox, Allen, Davidson, Ferdaña, Finlayson, Halpern, Jorge, Lombana, Lourie, Martin, McManus, Molnar, Recchia and Robertson2007).

RESULTS AND DISCUSSION

Biodiversity and taxonomy

Twenty-seven species of Homoscleromorpha are currently recognized in the Tropical Western Atlantic, including one of the family Oscarellidae (Oscarella nathaliae) and 26 plakinids: two Corticium, seven Plakina, four Plakinastrella, 12 Plakortis and one Tetralophophora (Table 1). This number represents 26.2% of the total of 103 species currently known worldwide (van Soest et al., Reference van Soest, Boury-Esnault, Hooper, Rützler, de Voogd, Alvarez de Glasby, Hajdu, Pisera, Manconi, Schoenberg, Janussen, Tabachnick, Klautau, Picton, Kelly, Vacelet, Dohrmann, Díaz and Cárdenas2015), and is slightly higher than the 23 species listed from the Mediterranean (Ereskovsky et al., Reference Ereskovsky, Ivanisevic and Perez2009b; Pansini et al., Reference Pansini, Manconi and Pronzato2011; Pérez et al., Reference Pérez, Ivanisevic, Dubois, Pedel, Thomas, Tokina and Ereskovsky2011).

Table 1. Checklist of currently accepted species of Homoscleromorpha from the Tropical Western Atlantic.

References of all articles reporting the species from the TWA are numbered within parentheses and listed below.

References: (1) Ereskovsky et al. (Reference Ereskovsky, Lavrov and Willenz2014); (2) Topsent (Reference Topsent1923); (3) Cedro et al. (Reference Cedro, Hajdu and Correia2013); (4) de Laubenfels (Reference de Laubenfels1936b); (5) Lehnert & van Soest (Reference Lehnert and van Soest1998); (6) Miloslavich et al. (Reference Miloslavich, Díaz, Klein, Alvarado, Díaz, Gobin, Escobar-Briones, Cruz-Motta, Weil, Cortés, Bastidas, Robertson, Zapata, Martín, Castillo, Kazandjian and Ortiz2010); (7) Hechtel (Reference Hechtel1965); (8) Boury-Esnault (Reference Boury-Esnault1973); (9) Schmidt (Reference Schmidt and Mauke1880); (10) Domingos et al. (Reference Domingos, Moraes and Muricy2013); (11) Moraes & Muricy (Reference Moraes and Muricy2003); (12) Uliczka (Reference Uliczka, Kükenthal and Hartmeyer1929); (13) Pulitzer-Finali (Reference Pulitzer-Finali1986); (14) Zea (Reference Zea1987); (15) Rützler et al. (Reference Rützler, Díaz, van Soest, Zea, Smith, Alvarez and Wulff2000); (16) Díaz (Reference Díaz2005); (17) Mothes et al. (Reference Mothes, Campos, Lerner and Silva2006); (18) Muricy et al. (Reference Muricy, Lopes, Hajdu, Carvalho, Moraes, Klautau, Menegola and Pinheiro2011); (19) Carter (Reference Carter1879); (20) Alcolado (Reference Alcolado1976); (21) Alcolado (Reference Alcolado2002); (22) Diaz & Rützler (Reference Diaz and Rützler2009); (23) van Soest (Reference van Soest1981); (24) Wintermann-Kilian & Kilian (Reference Wintermann-Kilian and Kilian1984); (25) Kobluk & van Soest (Reference Kobluk and van Soest1989); (26) Alvarez et al. (Reference Alvarez, Diaz, Laughlin and Rützler1990); (27) Díaz & van Soest (Reference Díaz, van Soest, van Soest, van Kempen and Braekman1994); (28) Kossuga et al. (Reference Kossuga, Nascimento, Reimão, Tempone, Taniwaki, Veloso, Ferreira, Cavalcanti, Pessoa, Moraes, Mayer, Hajdu and Berlinck2008); (29) Mothes & Bastian (Reference Mothes and Bastian1993); (30) Muricy & Moraes (Reference Muricy and Moraes1998); (31) Santos et al. (Reference Santos, Cantarelli, Tenório, Tabarelli and Silva2002); (32) Epifanio et al. (Reference Epifanio, Pinheiro and Alves2005); (33) Moraes et al. (Reference Moraes, Ventura, Klautau, Hajdu, Muricy, Alves and Castro2006); (34) Muricy et al. (Reference Muricy, Esteves, Moraes, Santos, Silva, Klautau and Lanna2008); (35) Arndt (Reference Arndt1927); (36) Wilson (Reference Wilson1902); (37) Collette & Rützler (Reference Collette and Rützler1977); (38) de Laubenfels (Reference de Laubenfels1934); (39) Rützler et al. (Reference Rützler, Piantoni, van Soest and Diaz2014); (40) van Soest et al. (Reference van Soest, Meesters and Becking2014); (41) de Laubenfels (Reference de Laubenfels1950a); (42) Hechtel (Reference Hechtel, Harrison and Cowden1976); (43) Rützler et al. (Reference Rützler, van Soest, Piantoni, Felder and Camp2009); (44) Moraes (Reference Moraes2011); (45) Moraes et al. (Reference Moraes, Vilanova and Muricy2003); (46) de Laubenfels (Reference de Laubenfels1936a); (47) Karlson & Osman (Reference Karlson and Osman2012).

The most specious genus of Homoscleromorpha in the TWA is Plakortis with 12 species, followed by Plakina (7 spp.) and Plakinastrella (4 spp.). This pattern contrasts with that of the Mediterranean, where Plakina and Oscarella dominate with 11 and seven species, respectively. Only one species of Plakortis, P. simplex Schulze, Reference Schulze1880, was reported so far from the Mediterranean (Ereskovsky et al., Reference Ereskovsky, Ivanisevic and Perez2009b), in strong contrast with its high species richness in the TWA. This may be related to a general preference of Plakortis spp. for coral reefs or rocky coast environments in tropical waters. The genus Plakortis is also very common and diverse in the tropical Indo-Australian region (Muricy, Reference Muricy2011).

Twelve new species and one new genus of Homoscleromorpha have been described from the TWA in the last two years, 2013–2014. Such recent descriptions illustrate well the growing interest in the diversity and biology of the class. These descriptions are quite detailed, usually including colour underwater photographs of living specimens, SEM pictures of spicules, and information on skeletal architecture in both the choanosome and the ectosome (Cedro et al., Reference Cedro, Hajdu and Correia2013; Domingos et al., Reference Domingos, Moraes and Muricy2013; Ereskovsky et al., Reference Ereskovsky, Lavrov and Willenz2014; Rützler et al., Reference Rützler, Piantoni, van Soest and Diaz2014; van Soest et al., Reference van Soest, Meesters and Becking2014). Older descriptions, however, are often much less complete and frequently raise doubts on the identity of several records of Homoscleromorpha in the region. It is thus difficult to recognize species such as Plakinastrella onkodes Uliczka, Reference Uliczka, Kükenthal and Hartmeyer1929, Plakortis angulospiculatus (Carter, Reference Carter1879), Plakortis halichondrioides (Wilson, Reference Wilson1902), Plakortis simplex, Plakortis zyggompha (de Laubenfels, Reference de Laubenfels1934), Corticium quadripartitum Topsent, Reference Topsent1923, Plakina elisa (de Laubenfels, Reference de Laubenfels1936) and Plakina versatilis (Schmidt, Reference Schmidt and Mauke1880). These species need taxonomic revision. This taxonomic uncertainty, especially in the genera Plakortis and Plakinastrella, is currently a major problem in the estimation of the biodiversity of Homoscleromorpha in the TWA.

Distribution patterns

Three species of Homoscleromorpha reported from the TWA are allegedly cosmopolitan: Plakina monolopha Schulze, Reference Schulze1880, P. trilopha Schulze, Reference Schulze1880 and Plakortis simplex (Table 2, Figure 2), all originally described from the Mediterranean. They have been reported in the TWA with short or without descriptions (e.g. Boury-Esnault, Reference Boury-Esnault1973; Pulitzer-Finali, Reference Pulitzer-Finali1986; Miloslavich et al., Reference Miloslavich, Díaz, Klein, Alvarado, Díaz, Gobin, Escobar-Briones, Cruz-Motta, Weil, Cortés, Bastidas, Robertson, Zapata, Martín, Castillo, Kazandjian and Ortiz2010). These records represent complexes of cryptic species and the TWA populations probably deserve new species names. The distribution of Plakina monolopha and P. trilopha within the study area is much more restricted than that of the Plakortis simplex complex, which occurs in five ecoregions (Figure 2).

Fig. 2. Distribution of allegedly cosmopolitan Homoscleromorpha species that occur in the TWA. Numbers within parentheses represent the total of ecoregions in which the species occurs within the TWA. Data from Table 2. See Figure 1 for the names of provinces and ecoregions in the TWA.

Table 2. Worldwide records of the three allegedly cosmopolitan species of Homoscleromorpha reported from the Tropical Western Atlantic: Plakina monolopha, P. trilopha and Plakortis simplex.

All other 24 species reported are TWA endemics. Within the TWA, only four species are widely distributed, occurring both in the Tropical North-western Atlantic and in the North Brazil Shelf or in the Tropical South-western Atlantic provinces: Plakinastrella onkodes, Plakinastrella microspiculifera Moraes & Muricy, Reference Moraes and Muricy2003, Plakortis angulospiculatus and Plakortis halichondrioides. These species also occurred in a large number of ecoregions, from 5–12 (Figure 3). As discussed above, however, this apparently wide distribution may be the result of misidentifications or different interpretations of each species’ concept, in general due to insufficient descriptions. One example is the concept of Plakinastrella onkodes, originally described as a light brown (in alcohol), massive sponge with small oscules (maximum 5 mm in diameter) on the sides of several small, irregular lobes (Uliczka, Reference Uliczka, Kükenthal and Hartmeyer1929). In more recent years, however, this species has been often described as light or dark brown, with a single or few tubes topped by a large apical oscule, or light grey and thick encrusting (Figure 4). Such taxonomic problems may have artificially increased by many thousands of kilometres and in three more provinces the estimated range of this (or these) species. Plakortis angulospiculatus and P. halichondrioides also have been described with wide morphological and ecological variations by different authors (e.g. Carter, Reference Carter1879; Wilson, Reference Wilson1902; Zea, Reference Zea1987; Díaz & van Soest, Reference Díaz1994; Lehnert & van Soest, Reference Lehnert and van Soest1998; Moraes & Muricy, Reference Moraes and Muricy2003; Figure 5), and their distribution could in fact be much more restricted than currently thought.

Fig. 3. Distribution of Homoscleromorpha species that occur in two or more biogeographic provinces in the TWA: widely distributed species or complexes of cryptic species with more restricted distributions. Numbers within parentheses represent the total of ecoregions in which the species occurs. See Figure 1 for the names of provinces and ecoregions.

Fig. 4. Morphological variation of Plakinastrella onkodes: (A) the holotype is irregularly lobate, bright light brown in alcohol, with small oscules (reproduced from Uliczka, Reference Uliczka, Kükenthal and Hartmeyer1929); (B–F) examples of the current concepts of P. onkodes: (B) greenish-brown, tubular specimen from the Bahamas (photo from Zea et al., Reference Zea, Henkel and Pawlik2014; http://www.spongeguide.org); (C) light brown, massively encrusting specimen from the Caribbean (photo Charles and Anne Sheppard; http://coralpedia.bio.warwick.ac.uk); (D) lobate, dark brown specimen from the Caribbean (photo Chris Freeman; http://porifera.lifedesks.org); (E) lobate, greyish brown specimen from Bocas del Toro, Panama (photo Renata Goodridge; http://biogeodb.stri.si.edu/bocas_database); (F) whitish specimen from Amapá State, N Brazil (reproduced from Mothes et al., Reference Mothes, Campos, Lerner and Silva2006).

Fig. 5. In situ photographs of Plakortis spp. from the TWA showing morphological variation. (A–C) P. angulospiculatus: (A–B) specimens from the Bahamas (photographs from Zea et al., Reference Zea, Henkel and Pawlik2014; http://www.spongeguide.org); (C) specimen from Potiguar Basin, NE Brazil (photo Fernando Moraes; http://www.poriferabrasil.mn.ufrj.br); (D–F) P. halichondrioides: specimens from the Bahamas (photographs from Zea et al., Reference Zea, Henkel and Pawlik2014; http://www.spongeguide.org). High variation in external morphology suggests possible cryptic speciation.

Most species (20/27, or approximately 74%) have narrow distributions, being restricted to 1–3 ecoregions in a single biogeographic province: 13 in the Tropical North-western Atlantic (Corticium diamantense, C. quadripartitum, O. nathaliae, Plakina elisa, P. jamaicensis, P. tetralopha, P. versatilis, Plakortis dariae, P. edwardsi, P. myrae, P. zyggompha, Plakinastrella stinapa, Tetralophophora mesoamericana; Figure 6), and seven in the Tropical South-western Atlantic (Plakina coerulea, Plakinastrella globularis, Plakortis insularis, P. microrhabdifera, P. potiguarensis, P. spinalis, P. petrupaulensis; Figure 7). This pattern probably reflects a low dispersal ability of the cinctoblastula larvae, rather than an artifact due to insufficient collections.

Fig. 6. Distribution of species restricted to the Tropical North-western Atlantic province (‘Caribbean endemics’). Numbers within parentheses represent the total of ecoregions in which the species occur. See Figure 1 for the names of provinces and ecoregions.

Fig. 7. Distribution of species restricted to the Tropical Southwestern Atlantic province (‘Brazilian endemics’). Numbers within parentheses represent the total of ecorregions in which the species occur. See Figure 1 for the names of provinces and ecoregions.

Biodiversity hotspots

The areas with the highest number of species recorded are Jamaica (12 spp.), Belize (8 spp.) and Panama (6 spp.) in the Caribbean, and Fernando de Noronha Archipelago and Potiguar Basin in Brazil (4 spp. each; Figure 8). On the other hand, five other areas had only one or two records (South Carolina, Bermuda, off the mouth of the Amazon River, Abrolhos Reefs, Trindade Island), and only the Guiana ecoregion has no record of homoscleromorphs so far (Figure 8).

Fig. 8. Species richness of Homoscleromorpha in different localities (numbers) and ecoregions (colour code) in the Tropical Western Atlantic. See Figure 1 for the names of provinces and ecoregions.

This pattern may be explained by the sum of several factors: (1) subjective taxonomic decisions leading to over-splitting of species and high apparent diversity (possibly the case of Jamaica); (2) subjective ‘lumping’ of populations that belong in fact to complexes of cryptic species, leading to a lower estimation of biodiversity (e.g. Plakortis simplex, P. angulospiculatus, Plakinastrella onkodes); (3) unequal sampling effort in different places (e.g. higher in Jamaica, Panama, Curaçao and Belize; lower in Abrolhos Reefs, Trindade Island and the Guianas); (4) real differences in species richness due to biogeographic, historical or ecological factors (this may be the case of the Guianas and Amazonian ecoregions, with high sediment input from the Amazonas and Orinoco rivers and relatively few hard substrates for sponge colonization). In the last hypothesis, the Guianas and Amazonian ecoregions could be effective barriers separating North-western and South-western Tropical Atlantic populations of Homoscleromorpha species and leading to allopatric speciation, increasing the diversity of the class in the Tropical Western Atlantic realm. More objective, integrative taxonomic approaches (e.g. Boury-Esnault et al., Reference Boury-Esnault, Lavrov, Ruiz and Perez2013; Cruz-Barraza et al., Reference Cruz-Barraza, Vega and Carballo2014; Ereskovsky et al., Reference Ereskovsky, Lavrov and Willenz2014; Ruiz et al., Reference Ruiz, Ivanisevic, Chevaldonné, Ereskovsky, Boury-Esnault, Vacelet, Thomas and Pérez2014), and increasing sampling efforts in poorly explored areas such as the Guianas and Abrolhos Reefs will help to make more precise estimations of the biodiversity and biogeography of Homoscleromorpha. The exploration of submarine caves and other sciaphilic habitats should also lead to a large number of species discovered, since most species of Oscarella, Plakina and Corticium are highly sciaphilic (Solé Cava et al., Reference Solé-Cava, Boury-Esnault, Vacelet and Thorpe1992; Muricy et al., Reference Muricy, Solé-Cava, Thorpe and Boury-Esnault1996, Reference Muricy, Boury-Esnault, Bézac and Vacelet1998; Ereskovsky et al., Reference Ereskovsky, Ivanisevic and Perez2009b; Gerovasileiou & Voultsiadou, Reference Gerovasileiou and Voultsiadou2012). Species of Plakinastrella and Plakortis, however, are often exposed to sunlight and wave action in reef environments (e.g. Zea, Reference Zea1987; Moraes & Muricy, Reference Moraes and Muricy2003), so these habitats should not be neglected as well.

Despite all the taxonomic problems and the need of more collections, several undescribed species of Oscarella, Plakina, Plakinastrella and Plakortis are known from Brazil and from the Caribbean (Figure 9; Muricy et al., Reference Muricy, Lopes, Hajdu, Carvalho, Moraes, Klautau, Menegola and Pinheiro2011). We therefore estimate that the true biodiversity of Homoscleromorpha in the TWA is at least twice as high as the 27 species currently known.

Fig. 9. In situ photographs of undescribed species of Plakina and Oscarella from the Tropical Western Atlantic. (A–C) Plakina spp. from Cabo Frio, SE Brazil; (D–F) Oscarella spp. from: (D) Cabo Frio, SE Brazil; (E) Cuba and (F) Fernando de Noronha, NE Brazil.

FINANCIAL SUPPORT

The authors are grateful to Fundação Carlos Chagas de Apoio à Pesquisa do Rio de Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for grants or fellowships.

References

REFERENCES

Alcolado, P.M. (1976) Lista de nuevos registros de Poriferos para Cuba. Oceanologia 36, 111.Google Scholar
Alcolado, P.M. (2002) Catálogo de las esponjas de Cuba. Avicennia 15, 5372.Google Scholar
Alvarez, B., Diaz, M.C. and Laughlin, R.A. (1990) The sponge fauna on a fringing coral reef in Venezuela, I: composition, distribution, and abundance. In Rützler, K. (ed.) New perspectives in sponge biology. Washington, DC: Smithsonian Institution Press, pp. 358366.Google Scholar
Arndt, W. (1927) Kalk- und Kieselschwämme von Curaçao. Bijdragen tot de Dierkunde 25, 133158.CrossRefGoogle Scholar
Bergquist, P.R. (1977) Porifera. In Devaney, D.M. and Eldredge, L.G. (eds) Reef and shore fauna of Hawaii. Section 1: protozoa through ctenophora. Honolulu: Bishop Museum Press, pp. 5369.Google Scholar
Bergquist, P.R. (1978) Sponges. London: Hutchinson and Co.Google Scholar
Borchiellini, C., Chombard, C., Manuel, M., Alivon, E., Vacelet, J. and Boury-Esnault, N. (2004) Molecular phylogeny of Demospongiae: implications for classification and scenarios of character evolution. Molecular Phylogenetics and Evolution 32, 823837.CrossRefGoogle ScholarPubMed
Boury-Esnault, N. (1973) Résultats scientifiques des campagnes de la ‘Calypso’. Campagne de la ‘Calypso’ au large des côtes atlantiques de l'Amérique du Sud (1961–1962). Spongiaires. Résultats Scientifiques des Campagnes de la ‘Calypso’ 10, 263295.Google Scholar
Boury-Esnault, N., Lavrov, D.V., Ruiz, C.A. and Perez, T. (2013) The integrative taxonomic approach applied to Porifera: a case study of the Homoscleromorpha. Integrative and Comparative Biology 53, 416427.CrossRefGoogle ScholarPubMed
Boury-Esnault, N., Muricy, G., Gallissian, M.F. and Vacelet, J. (1995) Sponges without skeleton: a new Mediterranean genus of Homoscleromorpha (Porifera, Demospongiae). Ophelia 43, 2543.CrossRefGoogle Scholar
Boury-Esnault, N. and van Beveren, M. (1982) Les Démosponges du plateau continental de Kerguelen-Heard. Comité National Français des Recherches Antarctiques 52, 1175.Google Scholar
Boute, N., Exposito, J.Y., Boury-Esnault, N., Vacelet, J., Noro, N., Miyazaki, K., Yoshizato, K. and Garrone, R. (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biology of the Cell 88, 3744.CrossRefGoogle ScholarPubMed
Burton, M. (1932) Sponges. Discovery Reports 6, 237392.CrossRefGoogle Scholar
Carter, H.J. (1879) Contributions to our knowledge of the Spongida. Annals and Magazine of Natural History 50, 284304, 343–360.CrossRefGoogle Scholar
Cedro, V.R., Hajdu, E. and Correia, M.D. (2013) Three new intertidal sponges (Porifera: Demospongiae) from Brazil's fringing urban reefs (Maceió, Alagoas, Brazil), and support for Rhabderemia‘s exclusion from Poecilosclerida. Journal of Natural History 47, 21512174.CrossRefGoogle Scholar
Collette, B.B. and Rützler, K. (1977) Reef fishes over sponge bottoms off the mouth of the Amazon River. Proceedings of the 3rd International Coral Reef Symposium 1, 305–310.Google Scholar
Cruz-Barraza, J.A., Vega, C. and Carballo, J.L. (2014) Taxonomy of family Plakinidae (Porifera: Homoscleromorpha) from eastern Pacific coral reefs, through morphology and cox1 and cob mtDNA data. Zoological Journal of the Linnean Society 171, 254276.CrossRefGoogle Scholar
de Laubenfels, M.W. (1934) New sponges from the Puerto Rican deep. Smithsonian Miscellaneous Collections 91, 128.Google Scholar
de Laubenfels, M.W. (1936a) A discussion of the sponge fauna of the Dry Tortugas in particular and the West Indies in general, with material for a revision of the families and orders of the Porifera. Tortugas Laboratory Occasional Papers 467, 1225.Google Scholar
de Laubenfels, M.W. (1936b) A comparison of the shallow-water sponges near the Pacific end of the Panama Canal with those at the Caribbean end. Proceedings of the United States National Museum 83, 441466.CrossRefGoogle Scholar
de Laubenfels, M.W. (1950a) The Porifera of the Bermuda Archipelago. Transactions of the Zoological Society of London 27, 1154.CrossRefGoogle Scholar
de Laubenfels, M.W. (1950b) The sponges of Kaneohe Bay, Oahu. Pacific Science 4, 336.Google Scholar
de Laubenfels, M.W. (1951) The sponges of the Island of Hawaii. Pacific Science 5, 256271.Google Scholar
Dendy, A. (1905) Report on the sponges collected by Professor Herdman at Ceylon in 1902. Reports on the Pearl Oyster Fisheries of the Gulf of Manaar 3, 59246.Google Scholar
Desqueyroux, R. (1972) Demospongiae (Porifera) de la Costa de Chile. Gayana 20, 371.Google Scholar
Díaz, M.C. (2005) Common sponges from shallow marine habitats from Bocas del Toro Region, Panama. Caribbean Journal of Science 41, 465475.Google Scholar
Diaz, M.C. and Rützler, K. (2009) Biodiversity and abundance of sponges in Caribbean mangrove: indicators of environmental quality. Smithsonian Contributions to the Marine Sciences 38, 151172.CrossRefGoogle Scholar
Díaz, M.C. and van Soest, R.W.M. (1994) The Plakinidae: a systematic review. In van Soest, R.W.M., van Kempen, Th.M.G. and Braekman, J.C. (eds) Sponges in Time and Space: Proceedings of the 4th International Porifera Conference, University of Amsterdam, Amsterdam, 19–23 April 1993. Rotterdam: A.A. Balkema, pp. 93–109.Google Scholar
Domingos, C., Moraes, F. and Muricy, G. (2013) Four new species of Plakinidae (Porifera: Homoscleromorpha) from Brazil. Zootaxa 3718, 530544.CrossRefGoogle ScholarPubMed
Durán, C. and Solórzano, M.R. (1982) Aportaciones al conocimiento del macrozoobenthos de la zona infralitoral rocosa de Galicia mediante la utilización de la escafandra autonoma: 1. Demosponjas. Trabajos Compostelanos de Biologia 9, 4967.Google Scholar
Epifanio, R.A., Pinheiro, L.S. and Alves, N.C. (2005) Polyketides from the marine sponge Plakortis angulospiculatus. Journal of the Brazilian Chemical Society 16, 13671371.CrossRefGoogle Scholar
Ereskovsky, A.V., Borchiellini, C., Gazave, E., Ivanisevic, J., Lapébie, P., Perez, T., Renard, E. and Vacelet, J. (2009a) The Homoscleromorph sponge Oscarella lobularis, a promising sponge model in evolutionary and developmental biology. BioEssays 31, 8997.CrossRefGoogle ScholarPubMed
Ereskovsky, A.V., Ivanisevic, J. and Perez, T. (2009b) Overview on the Homoscleromorpha sponge diversity in the Mediterranean. Proceedings of the 1st Symposium of the Coralligenous and other Calcareous Bio-concretions of the Mediterranean Sea. Tabarka, Tunisie, pp. 89–95.Google Scholar
Ereskovsky, A.V., Lavrov, D.V. and Willenz, P. (2014) Five new species of Homoscleromorpha (Porifera) from the Caribbean Sea and re-description of Plakina jamaicensis. Journal of the Marine Biological Association of the United Kingdom 94, 285307.CrossRefGoogle Scholar
Erpenbeck, D. and Wörheide, G. (2007) On the molecular phylogeny of sponges (Porifera). Zootaxa 1668, 107126.CrossRefGoogle Scholar
Gazave, E., Lapébie, P., Ereskovsky, A.V., Vacelet, J., Renard, E., Cárdenas, P. and Borchiellini, C. (2012) No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera. Hydrobiologia 687, 310.CrossRefGoogle Scholar
Gazave, E., Lapébie, P., Renard, E., Vacelet, J., Rocher, C., Ereskovsky, A.V., Lavrov, D. and Borchiellini, C. (2010) Molecular phylogeny restores the supra-generic subdivision of homoscleromorph sponges (Porifera, Homoscleromorpha). PLoS ONE 5, e14290.CrossRefGoogle ScholarPubMed
Gazave, E., Lavrov, D.V., Cabrol, J., Renard, E., Rocher, C., Vacelet, J., Adamska, M., Borchiellini, C. and Ereskovsky, A.V. (2013) Systematics and molecular phylogeny of the family Oscarellidae (Homoscleromorpha) with description of two new Oscarella species. PLoS ONE 8, e63976.CrossRefGoogle ScholarPubMed
Gerovasileiou, V. and Voultsiadou, E. (2012) Marine caves of the Mediterranean Sea: a sponge biodiversity reservoir within a biodiversity hotspot. PLoS ONE 7, e39873.CrossRefGoogle ScholarPubMed
Hechtel, G.J. (1965) A systematic study of the Demospongiae of Port Royal, Jamaica. Bulletin of the Peabody Museum of Natural History 20, 194.Google Scholar
Hechtel, G.J. (1976) Zoogeography of Brazilian marine Demospongiae. In Harrison, F.W. and Cowden, R.R. (eds) Aspects of sponge biology. New York, NY: Academic Press, pp. 237259.CrossRefGoogle Scholar
Hentschel, E. (1912) Kiesel- und Hornschwämme der Aru- und Kei-Inseln. Abhandlungen Herausgegeben von der Senckenbergischen Naturforschenden Gesellschaft 34, 293448.Google Scholar
Hoshino, T. (1981) Shallow-water Demosponges of western Japan 2. Journal of Science of the Hiroshima University (B) 29, 207289.Google Scholar
Kobluk, D.R. and van Soest, R.W.M. (1989) Cavity-dwelling sponges in a Southern Caribbean coral reef and their paleontological implications. Bulletin of Marine Science 44, 12071235.Google Scholar
Karlson, R.H. and Osman, R.W. (2012) Species composition and geographic distribution of invertebrates in fouling communities along the east coast of the USA: a regional perspective. Marine Ecology Progress Series 458, 255268.CrossRefGoogle Scholar
Koltun, V.M. (1971) To a knowledge of the sponge fauna of the Possjet Bay of the Sea of Japan. Explorations of the Flora and Fauna of the Seas 8, 2230. [in Russian]Google Scholar
Koltun, V.M. (1976) Porifera – Part 1: antarctic sponges. Report B.A.N.Z. Antarctic Research Expedition 1929–1931 (B, Zoology and Botany) 5, 153198.Google Scholar
Kossuga, M.H., Nascimento, A.M., Reimão, J.Q., Tempone, A.G., Taniwaki, N.N., Veloso, K., Ferreira, A.G., Cavalcanti, B.C., Pessoa, C., Moraes, M.O., Mayer, A.M.S., Hajdu, E. and Berlinck, R.G.S. (2008) Antiparasitic, antineuroinflammatory, and cytotoxic polyketides from the marine sponge Plakortis angulospiculatus collected in Brazil. Journal of Natural Products 71, 334339.CrossRefGoogle ScholarPubMed
Lehnert, H. and van Soest, R.W.M. (1998) Shallow water sponges of Jamaica. Beaufortia 48, 71103.Google Scholar
Lévi, C. and Lévi, P. (1989) Spongiaires (MUSORSTOM 1 & 2). Mémoires du Muséum national d'Histoire naturelle (A, Zoologie) 4, 25103.Google Scholar
Melone, N. (1965) I poriferi associati a Corallium rubrum (L.) della Sardegna. Annali del Museo Civico di Storia Naturale di Genova 75, 344358.Google Scholar
Miloslavich, P., Díaz, J.M., Klein, E., Alvarado, J.J., Díaz, C., Gobin, J., Escobar-Briones, E., Cruz-Motta, J.J., Weil, E., Cortés, J., Bastidas, A.C., Robertson, R., Zapata, F., Martín, A., Castillo, J., Kazandjian, A. and Ortiz, M. (2010) Marine biodiversity in the Caribbean: regional estimates and distribution patterns. PLoS ONE 5, e11916.CrossRefGoogle ScholarPubMed
Moraes, F. (2011) Esponjas das ilhas oceânicas brasileiras. Série Livros 44. Rio de Janeiro: Museu Nacional, 252 pp.Google Scholar
Moraes, F.C. and Muricy, G. (2003) Taxonomy of Plakortis and Plakinastrella (Demospongiae: Plakinidae) from oceanic islands of North-Eastern Brazil, with description of three new species. Journal of the Marine Biological Association of the United Kingdom 83, 385397.CrossRefGoogle Scholar
Moraes, F.C., Ventura, M., Klautau, M., Hajdu, E. and Muricy, G. (2006) Biodiversidade de esponjas das ilhas oceânicas brasileiras. In Alves, R.J.V. and Castro, J.W.A. (eds) Ilhas Oceânicas Brasileiras – da Pesquisa ao Manejo. Brasília: Ministério do Meio Ambiente, pp. 147178.Google Scholar
Moraes, F.C., Vilanova, E.P. and Muricy, G. (2003) Distribuição das esponjas (Porifera) na Reserva Biológica do Atol das Rocas, Nordeste do Brasil. Arquivos do Museu Nacional, Série Zoologia 61, 1322.Google Scholar
Mothes, B. and Bastian, M.C.K.A. (1993) Esponjas do Arquipélago de Fernando de Noronha, Brasil (Porifera, Demospongiae). Iheringia, Série Zoologia 75, 1531.Google Scholar
Mothes, B., Campos, M.A., Lerner, C.B. and Silva, C.M.M. (2006) Esponjas (Porifera, Demospongiae) da plataforma continental ao largo do Estado do Amapá, Brasil. Revista Brasileira de Zoologia 23, 667677.CrossRefGoogle Scholar
Muricy, G. (2011) Diversity of Indo-Australian Plakortis (Demospongiae: Plakinidae), with description of four new species. Journal of the Marine Biological Association of the United Kingdom 91, 303319.CrossRefGoogle Scholar
Muricy, G., Boury-Esnault, N., Bézac, C. and Vacelet, J. (1998) Taxonomic revision of the Mediterranean Plakina Schulze (Porifera, Demospongiae, Homoscleromorpha). Zoological Journal of the Linnean Society 124, 169203.CrossRefGoogle Scholar
Muricy, G. and Díaz, M.C. (2002) Order Homosclerophorida Dendy, 1905, Family Plakinidae Schulze, 1880. In Hooper, J.N.A. and van Soest, R.W.M. (eds) Systema Porifera: a guide to the classification of sponges. New York, NY: Kluwer Academic/Plenum Publishers, pp. 7182.CrossRefGoogle Scholar
Muricy, G., Esteves, E.L., Moraes, F., Santos, J.P., Silva, S.M., Klautau, M. and Lanna, E. (2008) Biodiversidade marinha da Bacia Potiguar. Rio de Janeiro: Museu Nacional, Série Livros 29.Google Scholar
Muricy, G., Lopes, D.A., Hajdu, E., Carvalho, M.S., Moraes, F.C., Klautau, M., Menegola, C. and Pinheiro, U. (2011) Catalogue of Brazilian Porifera. Rio de Janeiro: Museu Nacional, Série Livros 46.Google Scholar
Muricy, G. and Moraes, F.C. (1998) Marine sponges of Pernambuco State, NE Brazil. Revista Brasileira de Oceanografia 46, 213217.CrossRefGoogle Scholar
Muricy, G., Solé-Cava, A.M., Thorpe, J.P. and Boury-Esnault, N. (1996) Genetic evidence for extensive cryptic speciation in the subtidal sponge Plakina trilopha (Porifera: Demospongiae: Homoscleromorpha) from the Western Mediterranean. Marine Ecology Progress Series 138, 181187.CrossRefGoogle Scholar
Nielsen, C. (2008) Six major steps in animal evolution – are we derived sponge larvae? Evolution and Development 10, 241257.CrossRefGoogle ScholarPubMed
Nielsen, C. (2012) Animal evolution: interrelationships of the living phyla. 3rd edition. Oxford: Oxford University Press.Google Scholar
Pansini, M., Manconi, R. and Pronzato, R. (eds.) (2011) Porifera I. Calcarea, Demospongiae (partim), Hexactinellida, Homoscleromorpha. Fauna d'Italia, Bologna: Calderini-Il Sole 24 Ore.Google Scholar
Pérez, T., Ivanisevic, J., Dubois, M., Pedel, L., Thomas, O.P., Tokina, D. and Ereskovsky, A.V. (2011) Oscarella balibaloi, a new sponge species (Homoscleromorpha: Plakinidae) from the western Mediterranean Sea: cytological description, reproductive cycle and ecology. Marine Ecology 32, 174187.CrossRefGoogle Scholar
Philippe, H., Derelle, R., Lopez, P., Pick, K., Borchiellini, C., Boury-Esnault, N., Vacelet, J., Renard, E., Houliston, E., Quéinnec, E., Silva, C., Wincker, P., Le Guyader, H., Leys, S., Jackson, D.J., Schreiber, F., Erpenbeck, D., Morgenstern, B., Worheide, G. and Manuel, M. (2009) Phylogenomics revives traditional views on deep animal relationships. Current Biology 19, 706712.CrossRefGoogle ScholarPubMed
Pulitzer-Finali, G. (1986) A collection of West Indian Demospongiae (Porifera). In appendix, a list of the Demospongiae hitherto recorded from the West Indies. Annali del Museo Civico di Storia Naturale Giacomo Doria 86, 65216.Google Scholar
Ruiz, C., Ivanisevic, J., Chevaldonné, P., Ereskovsky, A.V., Boury-Esnault, N., Vacelet, J., Thomas, O.P. and Pérez, T. (2014) Integrative taxonomic description of Plakina kanaky, a new polychromatic sponge species from New Caledonia (Porifera: Homoscleromorpha). Marine Ecology. doi: 10.1111/maec.12209.Google Scholar
Rützler, K., Díaz, M.C., van Soest, R.W.M., Zea, S., Smith, K.P., Alvarez, B. and Wulff, J. (2000) Diversity of sponge fauna in mangrove ponds, Pelican Cays, Belize. Atoll Research Bulletin 476, 230248.Google Scholar
Rützler, K., Piantoni, C., van Soest, R.W.M. and Diaz, M.C. (2014) Diversity of sponges (Porifera) from cryptic habitats on the Belize barrier reef near Carrie Bow Cay. Zootaxa 3805, 1129.CrossRefGoogle Scholar
Rützler, K., van Soest, R.W.M. and Piantoni, M.C. (2009) Sponges (Porifera) of the Gulf of Mexico. In Felder, D.L. and Camp, D.K. (eds.) Gulf of Mexico – origins, waters, and biota. College Station, TX: Texas A&M Press, pp. 285313.Google Scholar
Santos, J.P., Cantarelli, J. and Tenório, D.O. (2002) Porifera do Estado de Pernambuco – Brasil. In Tabarelli, M. and Silva, J.M.C. (eds) Diagnóstico da biodiversidade de pernambuco. Recife: Massangana, pp. 385404.Google Scholar
Schmidt, O. (1862) Die spongien des adriatischen meeres. Leipzig: Wilhelm Engelmann.Google Scholar
Schmidt, O. (1880) Die spongien des Meerbusen von Mexico (und des Caraibischen Meeres). Abtheilung II, Hexactinelliden, Heft II. In Mauke, F. (ed.) Reports on the dredging under the supervision of Alexander Agassiz, in the Gulf of Mexico, by the USCSS ‘Blake’. Jena: Gustav Fischer, pp. 3390.Google Scholar
Schulze, F.E. (1880) Untersuchungen über den Bau und die Entwicklung der Spongien. Neunte Mittheilung. Die Plakiniden. Zeitschrift für Wissenschaftliche Zoologie 34, 407451.Google Scholar
Solé-Cava, A.M., Boury-Esnault, N., Vacelet, J. and Thorpe, J.P. (1992) Biochemical genetic divergence and systematics in sponges of the genera Corticium and Oscarella (Demospongiae: Homoscleromorpha) in the Mediterranean Sea. Marine Biology 113, 299304.CrossRefGoogle Scholar
Solórzano, M.R. (1991) Inventario dos poríferos do litoral galego (Porifera). Cadernos da Área de Ciencias Biolóxicas 7, 154.Google Scholar
Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferdaña, Z.A., Finlayson, M., Halpern, B.S., Jorge, M.A., Lombana, A., Lourie, S.A., Martin, K.D., McManus, E., Molnar, J., Recchia, C.A. and Robertson, J. (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573583.CrossRefGoogle Scholar
Thomas, P.A. (1970) On some deep sea sponges from the Gulf of Mannar, with descriptions of three new species. Journal of the Marine Biological Association of India 12, 202209.Google Scholar
Thomas, P.A. (1973) Marine Demospongiae of Mahe Island in the Seychelles Bank (Indian Ocean). Annales du Musée Royal de l'Afrique Centrale, Sciences Zoologiques 203, 196.Google Scholar
Topsent, E. (1897) Spongiaires de la Baie d'Amboine. (Voyage de MM. M. Bedot et C. Pictet dans l'Archipel Malais). Revue Suisse de Zoologie 4, 421487.CrossRefGoogle Scholar
Topsent, E. (1917) Spongiaires. In Deuxième Expédition Antarctique Française (1908–1910) commandée par le Dr. Jean Charcot. Sciences Naturelles: Documents Scientifiques. Paris: Masson et Cie, pp. 19.Google Scholar
Topsent, E. (1923) Spongiaires du Musée Zoologique de Strasbourg. Choristides. Bulletin de l'Institut Océanographique 435, 116.Google Scholar
Uliczka, E. (1929) Die tetraxonen Schwämme Westindiens (auf Grund der Ergebnisse der Reise Kükenthal-Hartmeyer). In Kükenthal, W. and Hartmeyer, R. (eds) Ergebnisse einer zoologischen Forschungsreise nach Westindien. Zoologische Jahrbücher. Abteilung für Systematik, Geographie und Biologie der Thiere, pp. 3562.Google Scholar
van Soest, R.W.M. (1981) A checklist of the Curaçao sponges (Porifera Demospongiae) including a pictorial key to the more common reef-forms. Verslagen en Technische Gegevens Instituut voor Taxonomische Zoölogie (Zoölogisch Museum) Universiteit van Amsterdam 31, 139.Google Scholar
van Soest, R.W.M. (1993) Affinities of the marine Demospongiae fauna of the Cape Verde Islands and Tropical West Africa. Courier Forschungsinstitut Senckenberg 159, 205219.Google Scholar
van Soest, R.W.M., Boury-Esnault, N., Hooper, J.N.A., Rützler, K., de Voogd, N.J., Alvarez de Glasby, B., Hajdu, E., Pisera, A.B., Manconi, R., Schoenberg, C., Janussen, D., Tabachnick, K.R., Klautau, M., Picton, B., Kelly, M., Vacelet, J., Dohrmann, M., Díaz, M.C. and Cárdenas, P. (2015) World Porifera database. Available at http://www.marinespecies.org/porifera.Google Scholar
van Soest, R.W.M., Meesters, E.H.W.G. and Becking, L.E. (2014) Deep-water sponges (Porifera) from Bonaire and Klein Curaçao, Southern Caribbean. Zootaxa 3878, 401443.CrossRefGoogle ScholarPubMed
van Soest, R.W.M. and Weinberg, S. (1980) A note on the sponges and octocorals from Sherkin Island and Lough Ine, Co. Cork. Irish Naturalist's Journal 20, 115.Google Scholar
von Lendenfeld, R. (1887) Die Chalineen des australischen Gebietes. Zoologische Jahrbücher 2, 723828.Google Scholar
Vosmaer, G.C.J. (1884) Studies on sponges: II–IV. Mitteilungen aus der Zoologischen Station zu Neapel 5, 483493.Google Scholar
Wilson, H.V. (1902) The sponges collected in Porto Rico in 1899 by the U.S. Fish Commission Steamer Fish Hawk. Bulletin of the United States Fish Commission 2, 375411.Google Scholar
Wintermann-Kilian, G. and Kilian, E.F. (1984) Marine sponges of the region of Santa Marta (Colombia). Part II. Homosclerophorida, Choristida, Spirophorida, Hadromerida, Axinellida, Halichondrida, Poecilosclerida. Studies on the Neotropical Fauna and Environment 19, 121135.CrossRefGoogle Scholar
Zea, S. (1987) Esponjas del Caribe Colombiano. Bogotá: Editorial Catálogo Científico.Google Scholar
Zea, S., Henkel, T.P. and Pawlik, J.R. (2014) The sponge guide: a picture guide to Caribbean sponges. 3rd edition. University of North Carolina, Wilmington. Available at http://www.spongeguide.org.Google Scholar
Figure 0

Fig. 1. Study area, according to the division of the Western Atlantic Ocean in realms, provinces and ecoregions of Spalding et al. (2007).

Figure 1

Table 1. Checklist of currently accepted species of Homoscleromorpha from the Tropical Western Atlantic.

Figure 2

Fig. 2. Distribution of allegedly cosmopolitan Homoscleromorpha species that occur in the TWA. Numbers within parentheses represent the total of ecoregions in which the species occurs within the TWA. Data from Table 2. See Figure 1 for the names of provinces and ecoregions in the TWA.

Figure 3

Table 2. Worldwide records of the three allegedly cosmopolitan species of Homoscleromorpha reported from the Tropical Western Atlantic: Plakina monolopha, P. trilopha and Plakortis simplex.

Figure 4

Fig. 3. Distribution of Homoscleromorpha species that occur in two or more biogeographic provinces in the TWA: widely distributed species or complexes of cryptic species with more restricted distributions. Numbers within parentheses represent the total of ecoregions in which the species occurs. See Figure 1 for the names of provinces and ecoregions.

Figure 5

Fig. 4. Morphological variation of Plakinastrella onkodes: (A) the holotype is irregularly lobate, bright light brown in alcohol, with small oscules (reproduced from Uliczka, 1929); (B–F) examples of the current concepts of P. onkodes: (B) greenish-brown, tubular specimen from the Bahamas (photo from Zea et al., 2014; http://www.spongeguide.org); (C) light brown, massively encrusting specimen from the Caribbean (photo Charles and Anne Sheppard; http://coralpedia.bio.warwick.ac.uk); (D) lobate, dark brown specimen from the Caribbean (photo Chris Freeman; http://porifera.lifedesks.org); (E) lobate, greyish brown specimen from Bocas del Toro, Panama (photo Renata Goodridge; http://biogeodb.stri.si.edu/bocas_database); (F) whitish specimen from Amapá State, N Brazil (reproduced from Mothes et al., 2006).

Figure 6

Fig. 5. In situ photographs of Plakortis spp. from the TWA showing morphological variation. (A–C) P. angulospiculatus: (A–B) specimens from the Bahamas (photographs from Zea et al., 2014; http://www.spongeguide.org); (C) specimen from Potiguar Basin, NE Brazil (photo Fernando Moraes; http://www.poriferabrasil.mn.ufrj.br); (D–F) P. halichondrioides: specimens from the Bahamas (photographs from Zea et al., 2014; http://www.spongeguide.org). High variation in external morphology suggests possible cryptic speciation.

Figure 7

Fig. 6. Distribution of species restricted to the Tropical North-western Atlantic province (‘Caribbean endemics’). Numbers within parentheses represent the total of ecoregions in which the species occur. See Figure 1 for the names of provinces and ecoregions.

Figure 8

Fig. 7. Distribution of species restricted to the Tropical Southwestern Atlantic province (‘Brazilian endemics’). Numbers within parentheses represent the total of ecorregions in which the species occur. See Figure 1 for the names of provinces and ecoregions.

Figure 9

Fig. 8. Species richness of Homoscleromorpha in different localities (numbers) and ecoregions (colour code) in the Tropical Western Atlantic. See Figure 1 for the names of provinces and ecoregions.

Figure 10

Fig. 9. In situ photographs of undescribed species of Plakina and Oscarella from the Tropical Western Atlantic. (A–C) Plakina spp. from Cabo Frio, SE Brazil; (D–F) Oscarella spp. from: (D) Cabo Frio, SE Brazil; (E) Cuba and (F) Fernando de Noronha, NE Brazil.