Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-05T15:51:56.554Z Has data issue: false hasContentIssue false

A new species of Archinome (Polychaeta: Archinomidae) from hydrothermal vents on the Pacific–Antarctic Ridge 37°S

Published online by Cambridge University Press:  20 April 2009

Dieter Fiege*
Affiliation:
Forschungsinstitut Senckenberg, Sektion Marine Evertebraten II, Senckenberganlage 25, D-60325, Frankfurt/M., Germany
Gordon Bock
Affiliation:
Forschungsinstitut Senckenberg, Sektion Marine Evertebraten II, Senckenberganlage 25, D-60325, Frankfurt/M., Germany Institut für Zoologie, Johannes Gutenberg-Universität Mainz, Johannes-von-Müller-Weg 6, D-55128 Mainz
*
Correspondence should be addressed to: D. Fiege, Forschungsinstitut Senckenberg, Sektion Marine Evertebraten II, Senckenberganlage 25, D-60325, Frankfurt/M., Germany email: Dieter.Fiege@senckenberg.de
Rights & Permissions [Opens in a new window]

Abstract

Archinome storchi sp. nov. is described as the second species of the family Archinomidae. The specimens were collected from a hydrothermal vent site in 2212 m depth on the Pacific–Antarctic Ridge at 37° S. It differs from Archinome rosacea mainly in the position of the anus, the first appearance of branchiae and the length of the nuchal cirrus. Additional specimens of A. rosacea collected from hydrothermal vent locations in the North Fiji Basin and on the Mid-Atlantic Ridge were used for morphological comparison. A synoptic table of characters is given for A. rosacea and A. storchi sp. nov. together with a list of records for Archinomidae compiled from the literature.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

INTRODUCTION

Archinome rosacea (Blake, Reference Blake1985) was originally described as belonging to the genus Euphrosine Savigny in Lamarck, Reference Lamarck1818 in the family Euphrosinidae Williams, Reference Williams1852 and later redescribed by Kudenov (Reference Kudenov, Petersen and Kirkegaard1991), who transferred it to the newly erected genus Archinome Kudenov, Reference Kudenov, Petersen and Kirkegaard1991 and established the new family Archinomidae Kudenov, Reference Kudenov, Petersen and Kirkegaard1991. According to this author the new family differs in the morphology of the caruncle, the branchiae and the parapodia in comparison to the Euphrosinidae as well as the Amphinomidae Savigny in Lamarck, Reference Lamarck1818. However, some authors believe that Archinome falls within Amphinomidae and that the erection of a new family was not justified (e.g. Fauchald & Rouse, Reference Fauchald and Rouse1997; Pleijel, Reference Pleijel, Rouse and Pleijel2001; Wiklund et al., Reference Wiklund, Nygren, Pleijel and Sundberg2008). Molecular studies by Wiklund et al. (Reference Wiklund, Nygren, Pleijel and Sundberg2008) revealed a close phylogenetic relationship of Archinome rosacea to Chloeia flava and the two species form a sister group to the remaining Amphinomidae. Wiklund et al. (Reference Wiklund, Nygren, Pleijel and Sundberg2008) opt for inclusion of Archinome within Amphinomidae, while the other option would be to include Chloeia within Archinomidae. Since there is no new information to decide between the two possibilities, we still consider the position of the genus Archinome unsettled and follow the current state of systematic placement for the time being.

According to published records from various locations in the Pacific, Atlantic, and Indian Oceans (Table 3) Archinome rosacea appears to be a cosmopolitan species, in contrast to most hydrothermal vent species which usually show a much more restricted distribution. However, the majority of these records is not supported by a detailed description based on the respective specimens and should therefore be regarded as tentative or preliminary identifications. A thorough study of morphological characters of specimens available to us from various locations in the Pacific and on the Mid-Atlantic Ridge (MAR) revealed significant differences for specimens collected from the Pacific–Antarctic Ridge (PAR). Specimens of A. rosacea collected from the North Fiji Basin fit to the original description while those from the Logatchev site on the MAR showed slight variations in some characters. Archinome storchi sp. nov. is described as new to science based on specimens collected from the PAR at 37°S.

MATERIALS AND METHODS

The specimens examined in this study have been collected during various cruises of RV ‘Sonne’ and RV ‘Meteor’ to hydrothermal vent sites in the Pacific Ocean, i.e. So 99, Hyfiflux I: North Fiji Basin (Halbach et al., Reference Halbach, Auzende and Türkay1996); So 134, Hyfiflux II: North Fiji Basin (Halbach et al., Reference Halbach, Giere, Seifert and Seifert1998); So 157, Foundation 3: PAR (Stoffers et al., Reference Stoffers, Worthington, Petersen, Hannington, Türkay, Ackermand, Borowski, Dankert, Fretzdorff, Haase, Hekinian, Hoppe, Jonasson, Kuhn, Lancaster, Monecke, Renno, Stecher and Weiershäuser2001), and to the MAR, i.e. Me 60/3, Hydromar I: MAR (Kuhn et al., Reference Kuhn, Alexander, Augustin, Birgel, Borowski, Carvalho, Engemann, Ertl, Franz, Grech, Hekinian, Imhoff, Jellinek, Klar, Koschinsky, Kuever, Kulescha, Lackschewitz, Petersen, Ratmeyer, Renken, Ruhland, Scholten, Schreiber, Seifert, Süling, Türkay, Westernströer and Zielinski2004) (Table 1).

Table 1. List of stations (abbreviations: MAR, Mid-Atlantic Ridge; PAR, Pacific–Antarctic Ridge; Me, RV ‘Meteor’; So, RV ‘Sonne’; TVG, TV grab; ROV, remotely operated vehicle; HV, hot vent).

Benthic samples were taken using Van Veen grabs with integrated TV camera (TVG), and remotely operated vehicles (ROVs) and sieved on board. Specimens were fixed in 10% formaldehyde–seawater solution and later transferred to 70% ethanol. Preserved specimens were examined using stereo and compound microscopes.

For SEM investigations specimens were dehydrated via graded ethanol series, critical point dried using CO2, coated with Au–Pd and examined in a CamScan CS 24 SEM equipped with ORION digital image capture. Light microscopical pictures were taken with a Nikon Coolpix 4500 or Canon G7 camera adapted to a Leica/Wild MZ 8 stereomicroscope. Drawings of specimens were made using a camera lucida and finalized according to the method described by Coleman (Reference Coleman2003). Illustrations were assembled using Adobe Photoshop and Adobe Illustrator.

Specimens are indicated in the text as: cs (complete specimen) and af (anterior fragment). In this description we follow Fauchald & Rouse (Reference Fauchald and Rouse1997) and Pleijel (Reference Pleijel, Rouse and Pleijel2001) using the term palps for the slender, digitiform prostomial appendages called palpal cirri by Kudenov (Reference Kudenov, Petersen and Kirkegaard1991). Likewise we prefer the term peristomial lips for the flat pads around the mouth (s.a. Fauchald & Rouse, Reference Fauchald and Rouse1997; Pleijel, Reference Pleijel, Rouse and Pleijel2001) described as palps by Kudenov (Reference Kudenov, Petersen and Kirkegaard1991). For the definition of dorsal, lateral, ventral cirri and nuchal cirrus we follow Kudenov (Reference Kudenov, Petersen and Kirkegaard1991). Since it appears uncertain whether the darkly pigmented spots on the prostomium represent eyes (Kudenov, Reference Kudenov, Petersen and Kirkegaard1991: eyes non lenticulate) we follow Ward et al. (Reference Ward, Jenkins and Van Dover2003) in using ‘eyespots’.

Type and other specimens are deposited in the Senckenberg Museum Frankfurt (SMF).

SYSTEMATICS
Family ARCHINOMIDAE Kudenov, Reference Kudenov1991
Genus Archinome Kudenov, Reference Kudenov1991
Archinome storchi sp. nov.

Table 2. Synoptic table of characters of Archinome storchi sp. nov. and Archinome rosacea.

TYPE MATERIAL

Holotype (cs), SMF 17876, south-east Pacific. RV ‘Sonne’ 157, Foundation 3, PAR: Central Axial High, Station 30 TVG, 37°47.467′ S 110°54.868′ W, 2212 m, 28.6.2001, sample containing glassy silica-rich lava and other vent related fauna (crabs, mussels, barnacles and polychaetes).

Table 3. Records of Archinomidae from the literature, including tentative or preliminary identifications (abbreviations: EPR, East Pacific Rise; PAR, Pacific–Antarctic Ridge).

Paratype (cs) as SEM stub 884, with chaetae removed, SMF 17877, same locality as holotype. 1 additional specimen (cs), in two fragments as SEM stubs 872, 874, SMF 17878, same locality as holotype.

COMPARATIVE MATERIAL EXAMINED

Archinome rosacea (Blake, Reference Blake1985): Holotype (cs), USNM 81788, East Pacific, Galapagos Rift geothermal vents, Alvin Dive 984, Rose garden, 00°48.3′ N 86°13.5′ W, 2447–2460 m, 1.12.1979, mussel washings.

Archinome rosacea (Blake, Reference Blake1985): North Fiji Basin, RV ‘Sonne’ 99, Hyfiflux I: Station 48 TVG, 1 spm (SMF 17679); Station 115 TVG, 2 spms (SMF 17880)RV ‘Sonne’ 134, Hyfiflux II: Station 33 TVG, 31 spms (SMF 17881); Station 35, many (SMF 17903); Station 66 TVG, 4 spms (SMF 17882); Station 99 TVG, many (SMF 17883)—MAR, RV ‘Meteor’ 60/3, Hydromar I: Station 23 ROV 10, 1 spm (SMF 17884), 1 spm on SEM stub 886 (SMF 17885); Station 35 TVG, many (SMF 17886), 3 spms on SEM stubs 870 (SMF 17887), 871 (SMF 17888), 877 (SMF 17889); Station 38 ROV, many (SMF 17890), 1 spm (SMF 17891), 3 spms on SEM stubs 883 (SMF 17892), 885 (SMF 17893), 887 (SMF 17894); Station 56 ROV, 11 spms (SMF 17895), 5 spms on SEM stubs 875 (SMF 17896), 876 (SMF 17897), 878 (SMF 17898), 880 (SMF 17899), 881 (SMF 17900); Station 66 ROV, >11 spms (SMF 17901), 1 spm on SEM stub 873 (SMF 17902).

DESCRIPTION

Holotype short, fusiform with a median row of ventral glandular pads. Length 15 mm for 23 chaetigers (including reduced posteriormost chaetiger, only visible in SEM); width 4.5 mm at widest part, appendages and chaetae not included. Body trapezoidal in cross-section (Figure 1A, B). Colour of body in alcohol light yellow; chaetae light yellow to transparent.

Fig. 1. Archinome storchi sp. nov. Holoype (SMF 17876): (A) Lateral view, right side; (B) dorsal view. Scale bar: 5 mm.

Prostomium extending anteroventrally into peristomial lips. Two pairs of ‘eyespots’; one pair of oblong mid-dorsal ‘eyespots’ in front of dorsomedial antennae and two elongate ‘eyespots’ situated ventrolaterally of chaetiger 1. One pair of dorsomedial antennae arising from a small pit posterior to dorsal pair of ‘eyespots’. A pair of slender ventrolateral palps present. Antennae and palps cirriform, similar in shape and size. Peristomium consisting of 2 large cushion-like lips separated by a midventral groove leading to mouth. Caruncle elongate extending posteriorly from chaetiger 1 to chaetiger 4, with median keel, lateral, longitudinal, ciliated ridges and ciliated groves (Figures 2A, 3A); caruncle of K-1 category according to Kudenov (Reference Kudenov1987). Long nuchal cirrus inserting at anterior end of caruncle, without cirrophore (Figure 2B).

Fig. 2. Archinome storchi sp. nov. Holotype (A, B: SMF 17876). (A) Anterior region, dorsal view; (B) detail of (A). Nuchal cirrus (arrow); Archinome rosacea. Holotype (USNM 81788); (C) anterior region, dorsal view. Nuchal cirrus (arrow); A. rosacea from Logatchev (MAR) (SMF 17893); (D) anterior region, dorsal view; upper part of chaetae removed. Nuchal cirrus (arrow). Scale bars: A–C, 1 mm.

Fig. 3. Archinome storchi sp. nov. Paratype (SMF 17877). (A) Anterior region, dorsal view; (B) left parapodium of chaetiger 4, posterior view; (C) notochaeta. Scale bars: A & B, 1 mm; C, 250 µm.

All parapodia biramous. Parapodia of first segment strongly reduced and projecting anteriorly. Parapodia of segment 2 and the following segments with low, conical notopodia, projecting dorsally (Figure 3B). Dorsal cirri long, slender, without cirrophores, inserting anteriorly to branchiae on dorsomedian border of notochaetal field (Figure 4A). Lateral cirri shorter, arising behind apex of notopodia; long, cirriform and basally coiled; thick cirrophore present (Figure 4B).

Fig. 4. Archinome storchi sp. nov. (A–C: SMF 17877; D & E: SMF 17878): (A) Dorsal cirrus and branchiae on chaetiger 8, dorsal view; (B) notopodium on chaetiger 10 with coiled lateral cirrus, anterior view; chaetae removed; (C) neuropodia with ventral cirri, chaetigers 4–6 from left to right, lateral view; chaetae removed; (D) anal cirrus, lateral view; (E) posterior end, dorsal view. Archinome rosacea from Logatchev (MAR) (SMF 17892); (F) posterior end, dorso-lateral view.

Neuropodia mound-shaped, dorsally pointed and projecting laterally. Ventral cirri slender, cirriform inserting midventrally, oriented posteriorly and upwards; with very short cirrophore. Chaetal field surrounded by epidermal bulge (Figure 4C).

Branchiae starting on chaetiger 3 with three filaments, palmate with short common trunk inserting on posterodorsal border of notopodial chaetal field (Figure 4A). Six filaments at chaetiger 4, seven filaments at chaetiger 7.

All chaetae simple and hollow. Neurochetae and notochaetae bifurcate with tines varying greatly in length. Ringent notochaetae absent. Notochaetae slightly stronger than neurochaetae (Figure 3C).

Single, thick, elongate, median pygidial cirrus with short transverse band of dark pigment on dorsal side (Figure 4D). Anus dorsally on chaetiger 19 (5th terminal chaetiger) surrounded by a thick, glandular epidermis (Figure 4E). Last chaetiger strongly reduced and projecting posteriorly, lacking cirri.

REMARKS

The species Archinome storchi sp. nov. differs from A. rosacea in the position of the anus, the length of the nuchal cirrus and the first appearance of branchiae (Table 2). The anus of A. storchi sp. nov. is positioned on the 5th terminal chaetiger (including reduced posteriormost chaetiger) while in A. rosacea it is situated on the 2nd terminal chaetiger with the pygidial cirrus arising directly behind the anus (Figure 4F) (reduced posteriormost segment not observed in holotype of A. rosacea under stereomicroscope). The nuchal cirrus of A. storchi sp. nov. is about twice as long as in A. rosacea (Figure 2B, C). Branchiae appear first on chaetiger 3 with three filaments in A. storchi sp. nov., while they appear on chaetiger 2 with 1–2 filaments in A. rosacea. Transverse band of dark pigment on dorsal side of pygidial cirrus is continuous in A. storchi sp. nov. and discontinuous in A. rosacea (s. Kudenov, Reference Kudenov, Petersen and Kirkegaard1991: figure 28). Moreover, appendages such as prostomial antennae, parapodial cirri and palps appear more delicate in A. storchi sp. nov. than in A. rosacea.

The specimens of Archinome collected from Logatchev (MAR) differ from A. rosacea and A. storchi sp. nov. by the presence of a shorter, minute nuchal cirrus (Figure 2D). Branchiae appear first on chaetiger 3 with 2–3 filaments. Whether this combination of characters indicates the presence of another undescribed species of Archinome on the MAR or simply represents intraspecific variability can only be solved by genetic studies of populations from various areas.

ETYMOLOGY

The species is named after Professor Dr Dr Volker Storch (Heidelberg), a distinguished German zoologist, who made important contributions to our knowledge of the anatomy, ultrastructure and taxonomy of Polychaeta.

DISTRIBUTION

Archinome storchi sp. nov. is only known from the type locality on the PAR at 37°S.

ACKNOWLEDGEMENTS

We thank our colleagues Thomas Jellinek, Michael Türkay and Jens Stecher (all Senckenberg, Frankfurt) for collecting and making the material available to us. Kristian Fauchald and Valorie Barnes (USNM, Smithsonian Institution, Washington, DC) kindly provided the holotype of Archinome rosacea on loan. Our thanks are also due to Melih Ertan Çinar and an anonymous referee for their valuable comments on the manuscript.

References

REFERENCES

Blake, E.A. (2006) Biogeographic and community structural differences between Pacific hydrothermal vent mussel beds. Program of the 5th Annual Graduate Research Symposium and American Culture Conference, March 24–25, 2006, College of William & Mary University Center Williamsburg, VA, USA. Abstract, pp. 1415. Available from http://www.wm.edu/so/gsa/symposium/documents/2006_GRS_Program.pdf (accessed 24 July 2008).Google Scholar
Blake, J.A. (1985) Polychaeta from the vicinity of deep-sea geothermal vents in the eastern Pacific. I: Euphrosinidae, Phyllodocidae, Hesionidae, Nereididae, Glyceridae, Dorvilleidae, Orbiniidae, and Maldanidae. Bulletin of the Biological Society of Washington 6, 67101.Google Scholar
Coleman, C.O. (2003) ‘Digital inking’: how to make perfect line drawings on computers. Organisms, Diversity and Evolution 3, 114, Electronic Supplement 14.CrossRefGoogle Scholar
Desbruyères, D., Biscoito, M., Caprais, J.-C., Colaço, A., Comtet, T., Crassous, P., Fouquet, Y., Khripounoff, A., Le Bris, N., Olu, K., Riso, R., Sarradin, P.-M., Segonzac, M. and Vangriesheim, A. (2001) Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau. Deep-Sea Research I, 48, 13251346.CrossRefGoogle Scholar
Desbruyères, D., Segonzac, M. and Bright, M. (2006) Handbook of deep-sea hydrothermal vent fauna. Denisia 18, 1544.Google Scholar
Fauchald, K. and Rouse, G. (1997) Polychaete systematics: past and present. Zoologica Scripta 26, 71138.CrossRefGoogle Scholar
Fiege, D. and Bock, G. (2007) SEM observations on Archinomidae (Annelida: Polychaeta) from hydrothermal vents in the Pacific and Atlantic. 9th International Polychaete Conference in Portland, Maine, USA. August 12–18, 2007. Abstract, p. 126.Google Scholar
Galkin, S.V., Vinogradov, G.M. and ‘Mir’ Submersibles Team (2004) Russian biological studies using Mir submersibles at North Atlantic and East Pacific hydrothermal sites. InterRidge News 13, 2733.Google Scholar
Galkin, S.V., Biological Group and ‘Mir’ Submersibles Team (2006) Lost Village—a ‘Faubourg’ of Lost City: benthic studies using Mir submersibles at North Atlantic hydrothermal sites in 2005. InterRidge News 15, 1824.Google Scholar
Gebruk, A.V., Galkin, S.V., Vereshchaka, A.L., Moskalev, L.I. and Southward, A.J. (1997) Ecology and biogeography of the hydrothermal vent fauna of the Mid-Atlantic Ridge. Advances in Marine Biology 32, 93144.CrossRefGoogle Scholar
Gebruk, A.V., Chevaldonné, P., Shank, T., Lutz, R.A. and Vrijenhoek, R.C. (2000) Deep-sea hydrothermal vent communities of the Logatchev area (14°45′N, Mid-Atlantic Ridge): diverse biotopes and high biomass. Journal of the Marine Biological Association of the United Kingdom 80, 383393.CrossRefGoogle Scholar
Govenar, B. and Fisher, C.R. (2007) Experimental evidence of habitat provision by aggregations of Riftia pachyptila at hydrothermal vents on the East Pacific Rise. Marine Ecology 28, 314.CrossRefGoogle Scholar
Haase, K., Flies, C., Fretzdorff, S., Giere, O., Houk, A., Klar, S., Koschinsky, A., Küver, J., Marbler, H., Mason, P., Nowald, N., Ostertag-Henning, C., Paulick, H., Perner, M., Petersen, S., Ratmeyer, V., Schmidt, W., Schott, T., Schröder, M., Seifert, R., Seiter, C., Stecher, J., Strauss, H., Süling, J., Unverricht, D., Warmuth, M., Weber, S. and Westernströer, U. (2005) Meteor-Berichte 05. Mid-Atlantic Expedition, Cruise No. 64, Leg 1, MARSÜD 2, 2 April–3 May 2005, Mindelo (Cape Verde)—Fortaleza (Brazil). Leitstelle Meteor, Institut für Meereskunde der Universität Hamburg, 59 pp.Google Scholar
Halbach, P., Auzende, J.M., Türkay, M. and the Scientific Party of the HYFIFLUX I Cruise (1996) The Hyfiflux Project. Hydrothermalism in the North Fiji Basin: evolution of fluids mass fluxes and special biological activity. Hyfiflux Part I. Evolution of mineral formation and zonation, special biological activity. R/V Sonne So 99 Research Cruise. 24.12.1994–28.01.1995. Manila–Suva–Suva. Technical Cruise Report SO 99. Berlin, 106 pp.Google Scholar
Halbach, P., Giere, O., Seifert, T., Seifert, R. and the Scientific Party of the HYFIFLUX II Cruise (1998) Hyfiflux II–SO 134. Hydrothermal fluid development, material bilancing and special biological activity in the North Fiji Becken. Research Cruise with RV Sonne, cruise no. SO 134. 11. Aug. 1998 (Suva, Fiji)–8. Sept. 1998 (Suva, Fiji). Technical Cruise Report. Berlin, 148 pp.Google Scholar
Hey, R.N., Massoth, G.J., Vrijenhoek, R.C., Rona, P.A., Lupton, J. and Butterfield, D.A. (2006) Hydrothermal vent geology and biology at earth's fastest spreading rates. Marine Geophysical Researches 27, 137153.CrossRefGoogle Scholar
Jenkins, C.D., Ward, M.E., Turnipseed, M., Osterberg, J. and Van Dover, C.L. (2002) The digestive system of the hydrothermal vent polychaete Galapagomystides aristata (Phyllodocidae): evidence for hematophagy? Invertebrate Biology, 121, 243254.CrossRefGoogle Scholar
Jollivet, D. (1996) Specific and genetic diversity at deep-sea hydrothermal vents: an overview. Biodiversity and Conservation 5, 16191653.CrossRefGoogle Scholar
Khripounoff, A., Vangriesheim, A., Crassous, P., Segonzac, M., Colaço, A., Desbruyères, D. and Barthelemy, R. (2001) Particle flux in the Rainbow hydrothermal vent field (Mid-Atlantic Ridge): dynamics, mineral and biological composition. Journal of Marine Research 59, 633656.CrossRefGoogle Scholar
Kicklighter, C.E., Fisher, C.R. and Hay, M.E. (2004) Chemical defense of hydrothermal vent and hydrocarbon seep organisms: a preliminary assessment using shallow-water consumers. Marine Ecology Progress Series 275, 1119.CrossRefGoogle Scholar
Kudenov, J.D. (1987) Review of the primary species characters for the genus Euphrosine (Polychaeta: Euphrosinidae). Bulletin of the Biological Society of Washington 7, 184193.Google Scholar
Kudenov, J.D. (1991) A new family and genus of the order Amphinomida (Polychaeta) from the Galapagos hydrothermal vents. In Petersen, M.E. and Kirkegaard, J.B. (eds) Proceedings of the 2nd International Polychaeta Conference, Copenhagen, 1986. Systematics, Biology and Morphology of World Polychaeta. Ophelia 5, Supplement, pp. 111120.CrossRefGoogle Scholar
Kuhn, T., Alexander, B., Augustin, N., Birgel, D., Borowski, C., Carvalho, L.M. de., Engemann, G., Ertl, S., Franz, L., Grech, C., Hekinian, R., Imhoff, J.F., Jellinek, T., Klar, S., Koschinsky, A., Kuever, J., Kulescha, F., Lackschewitz, K., Petersen, S., Ratmeyer, V., Renken, J., Ruhland, G., Scholten, J., Schreiber, K., Seifert, R., Süling, J., Türkay, M., Westernströer, U. and Zielinski, F. (2004) Meteor Berichte 03–04. Mid-Atlantic Expedition 2004. Cruise No. 60, Leg 3. Mineralogical, geochemical, and biological investigations of hydrothermal systems on the Mid-Atlantic Ridge between 14°45′N and 15°05′N (Hydromar I). 14 January–14 February 2004, Fort-de-France– Fort-de-France (Martinique). Leitstelle Meteor, Institut für Meereskunde der Universität Hamburg, 59 pp.Google Scholar
Lackschewitz, K.S., Armini, M., Augustin, N., Dubilier, N., Edge, D., Engemann, G., Fabian, M., Felden, J., Franke, P., Gärtner, A., Garbe-Schönberg, D., Gennerich, H.-H., Hüttig, D., Marbler, H., Meyerdierks, A., Pape, T., Perner, M., Reuter, M., Ruhland, G., Schmidt, K., Schott, T., Schroeder, M., Schroll, G., Seiter, C., Stecher, J., Strauss, H., Viehweger, M., Weber, S., Wenzhöfer, F. and Zielinski, F. (2005) Meteor Berichte 05. Mid-Atlantic Expedition, Cruise No. 64, Leg 2. Long term study of hydrothermalism and biology at the Logatchev field, Mid-Atlantic Ridge at 14°45′N (revisit 2005; HYDROMAR II) 6 May –6 June 2005, Fortaleza (Brazil) –Dakar (Senegal). Leitstelle Meteor, Institut für Meereskunde der Universität Hamburg, 61 pp.Google Scholar
Lamarck, J.B. (1818) Histoire naturelle des animaux sans vertèbres présentant les caractères généraux et particuliers de ces animaux, leur distribution, leurs classes, leurs familles, leurs genres, et la citation des principales espèces qui s'y rapportent; précédée d'une introduction offrant la détermination des caractères essentiels de l'animal, sa distinction du végétal et des autres corps naturels, enfin, l'exposition des principes fondamentaux de la zoologie 5. Paris: Déterville et Verdière.Google Scholar
Micheli, F., Peterson, C.H., Mullineaux, L.S., Fisher, C.R., Mills, S.W., Sancho, G., Johnson, G.A. and Lenihan, H.S. (2002) Predation structures communities at deep-sea hydrothermal vents. Ecological Monographs 72, 365382.CrossRefGoogle Scholar
Mullineaux, L.S., Mills, S.W., Sweetman, A.K., Beaudreau, A.H., Metaxas, A. and Hunt, H.L. (2005) Vertical, lateral and temporal structure in larval distributions at hydrothermal vents. Marine Ecology Progress Series 293, 116.CrossRefGoogle Scholar
Pleijel, F. (2001) Amphinomida. In Rouse, G. and Pleijel, F.Polychaetes. Oxford: Oxford University Press, pp. 145147.Google Scholar
Ramirez-Llodra, E., Blanco, M. and Arcas, A. (2004) ChEssBase: an Online Information System on Biodiversity and Biogeography of Deep-Sea Chemosynthetic Ecosystems. Version 2 World Wide Web electronic publications. Available from http://www.soc.soton.ac.uk/chess/database/ (accessed 24 July 2008).Google Scholar
Stoffers, P., Worthington, T., Petersen, S., Hannington, M., Türkay, M., Ackermand, D., Borowski, C., Dankert, S., Fretzdorff, S., Haase, K., Hekinian, R., Hoppe, A., Jonasson, I., Kuhn, T., Lancaster, R., Monecke, T., Renno, A., Stecher, J. and Weiershäuser, L. (2001) Cruise Report Sonne 157, Foundation 3. Magmatic and hydrothermal processes at a spreading axis influenced by a hotspot: the Pacific–Antarctic Ridge and off-axis seamounts near 37°S. Valparaiso, Chile–Easter Island, Chile, 15 June–14 July 2001. Berichte–Reports. Institut für Geowissenschaften, Universität Kiel 17, 1132.Google Scholar
Tarasov, V.G., Gebruk, A.V., Mironov, A.N. and Moskalev, L.I. (2005) Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chemical Geology 224, 539.CrossRefGoogle Scholar
Van Dover, C.L. (2002a) Community structure of mussel beds at deep-sea hydrothermal vents. Marine Ecology Progress Series 230, 137158.CrossRefGoogle Scholar
Van Dover, C.L. (2002b) Trophic relationships among invertebrates at the Kairei hydrothermal vent field (Central Indian Ridge). Marine Biology 141, 761772.CrossRefGoogle Scholar
Van Dover, C.L. (2003) Variation in community structure within hydrothermal vent mussel beds of the East Pacific Rise. Marine Ecology Progress Series 253, 5566.CrossRefGoogle Scholar
Van Dover, C.L. and Doerries, M.B. (2005) Community structure in mussel beds at Logatchev hydrothermal vents and a comparison of macrofaunal species richness on slow- and fast-spreading mid-ocean ridges. Marine Ecology 26, 110120.CrossRefGoogle Scholar
Van Dover, C.L., Bacon, S., Carpenter, L. and Last, K. (2001a) Diversity within 9°50′N mussel beds on the East Pacific Rise: establishment of Train Station, East Wall and Biovent mussel beds as long-term study sites. InterRidge News 10, 2627.Google Scholar
Van Dover, C.L., Humphris, S.E., Fornari, D., Cavanaugh, C.M., Collier, R., Goffredi, S.K., Hashimoto, J., Lilley, M.D., Reysenbach, A.L., Shank, T.M., Von Damm, K.L., Banta, A., Gallant, R.M., Götz, D., Green, D., Hall, J., Harmer, T.L., Hurtado, L.A., Johnson, P., McKiness, Z.P., Meredith, C., Olson, E., Pan, I.L., Turnipseed, M., Won, Y., Young, C.R. III and Vrijenhoek, R.C. (2001b) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294, 818823.CrossRefGoogle ScholarPubMed
Ward, M.E., Jenkins, C.D. and Van Dover, C.L. (2003) Functional morphology and feeding strategy of the hydrothermal-vent polychaete Archinome rosacea (family Archinomidae). Canadian Journal of Zoology 81, 582590.CrossRefGoogle Scholar
Wiklund, H., Nygren, A., Pleijel, F. and Sundberg, P. (2008) The phylogenetic relationships between Amphinomidae, Archinomidae and Euphrosinidae (Amphinomida, Aciculata, Polychaeta), inferred from molecular data. Journal of the Marine Biological Association of the United Kingdom 88, 509513.CrossRefGoogle Scholar
Williams, T. (1852) Report on the British Annelida. Report of the Twenty-first Meeting of the British Association for the Advancement of Science held at Ipswich in July 1851. London: John Murray, pp. 1273.Google Scholar
Figure 0

Table 1. List of stations (abbreviations: MAR, Mid-Atlantic Ridge; PAR, Pacific–Antarctic Ridge; Me, RV ‘Meteor’; So, RV ‘Sonne’; TVG, TV grab; ROV, remotely operated vehicle; HV, hot vent).

Figure 1

Table 2. Synoptic table of characters of Archinome storchi sp. nov. and Archinome rosacea.

Figure 2

Table 3. Records of Archinomidae from the literature, including tentative or preliminary identifications (abbreviations: EPR, East Pacific Rise; PAR, Pacific–Antarctic Ridge).

Figure 3

Fig. 1. Archinome storchi sp. nov. Holoype (SMF 17876): (A) Lateral view, right side; (B) dorsal view. Scale bar: 5 mm.

Figure 4

Fig. 2. Archinome storchi sp. nov. Holotype (A, B: SMF 17876). (A) Anterior region, dorsal view; (B) detail of (A). Nuchal cirrus (arrow); Archinome rosacea. Holotype (USNM 81788); (C) anterior region, dorsal view. Nuchal cirrus (arrow); A. rosacea from Logatchev (MAR) (SMF 17893); (D) anterior region, dorsal view; upper part of chaetae removed. Nuchal cirrus (arrow). Scale bars: A–C, 1 mm.

Figure 5

Fig. 3. Archinome storchi sp. nov. Paratype (SMF 17877). (A) Anterior region, dorsal view; (B) left parapodium of chaetiger 4, posterior view; (C) notochaeta. Scale bars: A & B, 1 mm; C, 250 µm.

Figure 6

Fig. 4. Archinome storchi sp. nov. (A–C: SMF 17877; D & E: SMF 17878): (A) Dorsal cirrus and branchiae on chaetiger 8, dorsal view; (B) notopodium on chaetiger 10 with coiled lateral cirrus, anterior view; chaetae removed; (C) neuropodia with ventral cirri, chaetigers 4–6 from left to right, lateral view; chaetae removed; (D) anal cirrus, lateral view; (E) posterior end, dorsal view. Archinome rosacea from Logatchev (MAR) (SMF 17892); (F) posterior end, dorso-lateral view.