Hostname: page-component-7b9c58cd5d-hpxsc Total loading time: 0 Render date: 2025-03-16T09:35:32.287Z Has data issue: false hasContentIssue false

Calycophoran siphonophore muscle fibres without any sarcoplasmic reticulum but with tubular invaginations morphologically analogous to a T-system

Published online by Cambridge University Press:  01 December 1999

Q. Bone
Affiliation:
Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, England
C. Carré
Affiliation:
Observatoire Océanologique, URA 231, 06230 Villefranche-sur-Mer, France
I. Tsutsui
Affiliation:
National Institute of Physiological Sciences, Okazaki, 444-0867, Japan
I. Inoue
Affiliation:
Institute for Enzyme Research, University of Tokushima, Tokushima, 770-0042, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Different marine invertebrates have different tubular or vesicular systems within their locomotor muscle fibres. The siphonophores Chelophyes, Abylopsis and Muggeia have invaginated tubules which are the morphological equivalent of the vertebrate invaginated tubular system, but lack a sarcoplasmic reticulum. In Chelophyes the previous suggestion that Ca2+ channels in the extensive invaginated tubule system allow ingress of Ca2+ is shown to be incorrect. Contraction of the swimming muscles in Chelophyes is not blocked by 20 μM ryanodine, nor is it induced by 10 mM caffeine, hence intracellular Ca2+ stores appear absent. Contraction is, however, maintained by replacement of the greater part of the usual external Na+ by Li+ or by or N-methyl-D-glucamine, although action potentials can still be evoked. Hence we conclude that following contraction, internal Ca2+ is reduced by a Na/Ca2+ exchange mechanism.

Type
Research Article
Copyright
© 1999 Marine Biological Association of the United Kingdom