Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-06T05:19:18.810Z Has data issue: false hasContentIssue false

ORBITAL INTEGRALS FOR LINEAR GROUPS

Published online by Cambridge University Press:  10 December 2007

Raf Cluckers
Affiliation:
Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200B, B-3001 Leuven, Belgium (jan.denef@wis.kuleuven.be) Present address: École Normale Supérieure, Département de Mathématiques et Applications, 45 rue d'Ulm, 75230 Paris Cedex 05, France (cluckers@ens.fr)
Jan Denef
Affiliation:
Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200B, B-3001 Leuven, Belgium (jan.denef@wis.kuleuven.be)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a linear group $G$ acting on an absolutely irreducible variety $X$ over $\mathbb{Q}$, we describe the orbits of $X(\mathbb{Q}_p)$ under $G(\mathbb{Q}_p)$ and of $X(\mathbb{F}_p((t)))$ under $G(\mathbb{F}_p((t)))$ for $p$ big enough. This allows us to show that the degree of a wide class of orbital integrals over $\mathbb{Q}_p$ or $\mathbb{F}_p((t))$ is less than or equal to $0$ for $p$ big enough, and similarly for all finite field extensions of $\mathbb{Q}_p$ and $\mathbb{F}_p((t))$.

Type
Research Article
Copyright
2007 Cambridge University Press