Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-02-10T14:38:43.086Z Has data issue: false hasContentIssue false

On stable fields and weight

Published online by Cambridge University Press:  01 July 2010

Krzysztof Krupiński
Affiliation:
Instytut Matematyczny Uniwersytetu Wrocławskiego, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland (kkrup@math.uni.wroc.pl)
Anand Pillay
Affiliation:
Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK (pillay@maths.leeds.ac.uk)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that if K is an (infinite) stable field whose generic type has weight 1, then K is separably closed. We also obtain some partial results about stable groups and fields whose generic type has finite weight, as well as about strongly stable fields (where by definition all types have finite weight).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

References

1.Adler, H., Strong theories, burden, and weight, preprint (2007).CrossRefGoogle Scholar
2.Cherlin, G. and Shelah, S., Superstable fields and groups, Annals Math. Logic 18 (1980), 227270.Google Scholar
3.Delon, F., Idéaux et types sur les corps séparablement clos, Supplément au Bulletin Société Mathématique de France, Mémoire 33, Tome 116 (Société Mathématique de France, Paris, 1988).CrossRefGoogle Scholar
4.Kaplan, I., Scanlon, T. and Wagner, F., Artin–Schreier extensions in dependent and simple fields, Israel J. Math., in press.Google Scholar
5.Macintyre, A., On ω1-categorical theories of fields, Fund. Math. 71 (1971), 125.CrossRefGoogle Scholar
6.Pillay, A., Geometric stability theory (Oxford University Press, 1996).CrossRefGoogle Scholar
7.Pillay, A., Model theory of algebraically closed fields, in Model theory and algebraic geometry: an introduction to E. Hrushovski's proof of the geometric Mordell–Lang conjecture (ed. Bouscaren, E.) (Springer, 1998).Google Scholar
8.Pillay, A., Forking in the free group, J. Inst. Math. Jussieu 7 (2008), 375389.CrossRefGoogle Scholar
9.Poizat, B., Stable groups (American Mathematical Society, Providence, RI, 2001).CrossRefGoogle Scholar
10.Shelah, S., Strongly dependent theories, preprint SH863.Google Scholar