No CrossRef data available.
Published online by Cambridge University Press: 17 April 2017
Let
$a\in \mathbb{R}$
, and let
$k(a)$
be the largest constant such that
$\sup |\text{cos}(na)-\cos (nb)|<k(a)$
for
$b\in \mathbb{R}$
implies that
$b\in \pm a+2\unicode[STIX]{x1D70B}\mathbb{Z}$
. We show that if a cosine sequence
$(C(n))_{n\in \mathbb{Z}}$
with values in a Banach algebra
$A$
satisfies
$\sup _{n\geq 1}\Vert C(n)-\cos (na).1_{A}\Vert <k(a)$
, then
$C(n)=\cos (na).1_{A}$
for
$n\in \mathbb{Z}$
. Since
$\!\sqrt{5}/2\leq k(a)\leq 8/3\!\sqrt{3}$
for every
$a\in \mathbb{R}$
, this shows that if some cosine family
$(C(g))_{g\in G}$
over an abelian group
$G$
in a Banach algebra satisfies
$\sup _{g\in G}\Vert C(g)-c(g)\Vert <\!\sqrt{5}/2$
for some scalar cosine family
$(c(g))_{g\in G}$
, then
$C(g)=c(g)$
for
$g\in G$
, and the constant
$\!\sqrt{5}/2$
is optimal. We also describe the set of all real numbers
$a\in [0,\unicode[STIX]{x1D70B}]$
satisfying
$k(a)\leq \frac{3}{2}$
.