Published online by Cambridge University Press: 25 November 2015
Let ${\mathcal{A}}$ be a unital ring with involution. Assume that
${\mathcal{A}}$ contains a nontrivial symmetric idempotent and
${\it\phi}:{\mathcal{A}}\rightarrow {\mathcal{A}}$ is a nonlinear surjective map. We prove that if
${\it\phi}$ preserves strong skew commutativity, then
${\it\phi}(A)=ZA+f(A)$ for all
$A\in {\mathcal{A}}$, where
$Z\in {\mathcal{Z}}_{s}({\mathcal{A}})$ satisfies
$Z^{2}=I$ and
$f$ is a map from
${\mathcal{A}}$ into
${\mathcal{Z}}_{s}({\mathcal{A}})$. Related results concerning nonlinear strong skew commutativity preserving maps on von Neumann algebras are given.