Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-05T22:50:27.613Z Has data issue: false hasContentIssue false

ON LINEAR RELATIONS FOR DIRICHLET SERIES FORMED BY RECURSIVE SEQUENCES OF SECOND ORDER

Published online by Cambridge University Press:  16 January 2020

CARSTEN ELSNER
Affiliation:
University of Applied Sciences, Freundallee 15, D-30173Hanover, Germany e-mail: carsten.elsner@fhdw.de
NICLAS TECHNAU*
Affiliation:
Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK Technische Universität Graz, Institut für Analysis und Zahlentheorie, Steyrergasse 30/II, A-8010Graz, Austria e-mail: technau@math.tugraz.at
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $F_{n}$ and $L_{n}$ be the Fibonacci and Lucas numbers, respectively. Four corresponding zeta functions in $s$ are defined by

$$\begin{eqnarray}\unicode[STIX]{x1D701}_{F}(s):=\mathop{\sum }_{n=1}^{\infty }{\displaystyle \frac{1}{F_{n}^{s}}},\quad \unicode[STIX]{x1D701}_{F}^{\ast }(s):=\mathop{\sum }_{n=1}^{\infty }{\displaystyle \frac{(-1)^{n+1}}{F_{n}^{s}}},\quad \unicode[STIX]{x1D701}_{L}(s):=\mathop{\sum }_{n=1}^{\infty }{\displaystyle \frac{1}{L_{n}^{s}}},\quad \unicode[STIX]{x1D701}_{L}^{\ast }(s):=\mathop{\sum }_{n=1}^{\infty }{\displaystyle \frac{(-1)^{n+1}}{L_{n}^{s}}}.\end{eqnarray}$$
As a consequence of Nesterenko’s proof of the algebraic independence of the three Ramanujan functions $R(\unicode[STIX]{x1D70C}),Q(\unicode[STIX]{x1D70C}),$ and $P(\unicode[STIX]{x1D70C})$ for any algebraic number $\unicode[STIX]{x1D70C}$ with $0<\unicode[STIX]{x1D70C}<1$, the algebraic independence or dependence of various sets of these numbers is already known for positive even integers $s$. In this paper, we investigate linear forms in the above zeta functions and determine the dimension of linear spaces spanned by such linear forms. In particular, it is established that for any positive integer $m$ the solutions of
$$\begin{eqnarray}\mathop{\sum }_{s=1}^{m}(t_{s}\unicode[STIX]{x1D701}_{F}(2s)+u_{s}\unicode[STIX]{x1D701}_{F}^{\ast }(2s)+v_{s}\unicode[STIX]{x1D701}_{L}(2s)+w_{s}\unicode[STIX]{x1D701}_{L}^{\ast }(2s))=0\end{eqnarray}$$
with $t_{s},u_{s},v_{s},w_{s}\in \mathbb{Q}$$(1\leq s\leq m)$ form a $\mathbb{Q}$-vector space of dimension $m$. This proves a conjecture from the Ph.D. thesis of Stein, who, in 2012, was inspired by the relation $-2\unicode[STIX]{x1D701}_{F}(2)+\unicode[STIX]{x1D701}_{F}^{\ast }(2)+5\unicode[STIX]{x1D701}_{L}^{\ast }(2)=0$. All the results are also true for zeta functions in $2s$, where the Fibonacci and Lucas numbers are replaced by numbers from sequences satisfying a second-order recurrence formula.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Footnotes

Communicated by M. Coons

References

André-Jeannin, R., ‘Irrationalité de la somme des inverses de certaines suites récurrentes’, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), 539541.Google Scholar
Borwein, J. M. and Borwein, P. B., Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Canadian Mathematical Society Series of Monographs and Advanced Texts, 4 (Wiley, New York, 1987).Google Scholar
Byrd, P. F. and Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Physicists, 2nd edn (Springer, Berlin, 1971).Google Scholar
Duverney, D., Nishioka, Ke., Nishioka, Ku. and Shiokawa, I., ‘Transcendence of Rogers–Ramanujan continued fraction and reciprocal sums of Fibonacci numbers’, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 140142.Google Scholar
Elsner, C., Shimomura, S. and Shiokawa, I., ‘Algebraic relations for reciprocal sums of Fibonacci numbers’, Acta Arith. 130(1) (2007), 3760.Google Scholar
Elsner, C., Shimomura, S. and Shiokawa, I., ‘Exceptional algebraic relations for reciprocal sums of Fibonacci and Lucas numbers’, in: Diophantine Analysis and Related Fields 2011, AIP Conf. Proc., 1385 (eds. Amou, M. and Katsurada, M.) (AIP, New York, 2011), 1731.Google Scholar
Elsner, C., Shimomura, S. and Shiokawa, I., ‘Algebraic independence results for reciprocal sums of Fibonacci numbers’, Acta Arith. 148(3) (2011), 205223.Google Scholar
Nesterenko, Yu. V., ‘Modular functions and transcendence questions’, Mat. Sb. 187 (1996), 6596; English transl. Sb. Math. 187 (1996), 1319–1348.Google Scholar
Stein, M., ‘Algebraic independence results for reciprocal sums of Fibonacci and Lucas numbers’, PhD Thesis, Gottfried Wilhelm Leibniz Universität Hannover, Fakultät für Mathematik und Physik, 2012. https://www.tib.eu/de/suchen/id/TIBKAT%3A684662426/Algebraic-independence-results-for-reciprocal-sums/.Google Scholar
Zucker, I. J., ‘The summation of series of hyperbolic functions’, SIAM J. Math. Anal. 10 (1979), 192206.Google Scholar