No CrossRef data available.
Article contents
MEASURABLE
$E_{0}$-SEMIGROUPS ARE CONTINUOUS
Published online by Cambridge University Press: 04 December 2019
Abstract
Let $G$ be a second countable locally compact Hausdorff topological group and
$P$ be a closed subsemigroup of
$G$ containing the identity element
$e\in G$. Assume that the interior of
$P$ is dense in
$P$. Let
$\unicode[STIX]{x1D6FC}=\{{\unicode[STIX]{x1D6FC}_{x}\}}_{x\in P}$ be a semigroup of unital normal
$\ast$-endomorphisms of a von Neumann algebra
$M$ with separable predual satisfying a natural measurability hypothesis. We show that
$\unicode[STIX]{x1D6FC}$ is an
$E_{0}$-semigroup over
$P$ on
$M$.
MSC classification
- Type
- Research Article
- Information
- Journal of the Australian Mathematical Society , Volume 111 , Issue 2 , October 2021 , pp. 278 - 288
- Copyright
- © 2019 Australian Mathematical Publishing Association Inc.
Footnotes
Communicated by A. Sims
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210912153438650-0264:S1446788719000417:S1446788719000417_inline15.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210912153438650-0264:S1446788719000417:S1446788719000417_inline16.png?pub-status=live)