Article contents
Classifying positive equivalence relations
Published online by Cambridge University Press: 12 March 2014
Abstract
Given two (positive) equivalence relations ~1, ~2 on the set ω of natural numbers, we say that ~1 is m-reducible to ~2 if there exists a total recursive function h such that for every x, y ∈ ω, we have x ~1y iff hx ~2hy. We prove that the equivalence relation induced in ω by a positive precomplete numeration is complete with respect to this reducibility (and, moreover, a “uniformity property” holds). This result allows us to state a classification theorem for positive equivalence relations (Theorem 2). We show that there exist nonisomorphic positive equivalence relations which are complete with respect to the above reducibility; in particular, we discuss the provable equivalence of a strong enough theory: this relation is complete with respect to reducibility but it does not correspond to a precomplete numeration.
From this fact we deduce that an equivalence relation on ω can be strongly represented by a formula (see Definition 8) iff it is positive. At last, we interpret the situation from a topological point of view. Among other things, we generalize a result of Visser by showing that the topological space corresponding to a partition in e.i. sets is irreducible and we prove that the set of equivalence classes of true sentences is dense in the Lindenbaum algebra of the theory.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1983
References
REFERENCES
- 58
- Cited by