Hostname: page-component-7b9c58cd5d-6tpvb Total loading time: 0 Render date: 2025-03-15T04:24:11.831Z Has data issue: false hasContentIssue false

Nonideal effects on inelastic Compton scattering in a nonideal plasma

Published online by Cambridge University Press:  17 June 2002

YOUNG-DAE JUNG
Affiliation:
Department of Physics, 0319, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0319, USA Permanent address: Department of Physics, Hanyang University, Ansan, Kyunggi-Do 425-791, South Korea (ydjung@physics.ucsd.edu; yjung@bohr.hanyang.ac.kr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Inelastic Compton scattering of photons by hydrogenic ions in a classical nonideal plasma is investigated. An effective pseudopotential model taking into account plasma screening and collective effects is applied to describe the interaction potential in a nonideal plasma. The screened atomic wave functions and energy eigenvalues for the ground and excited states of the hydrogenic ion in a classical nonideal plasma obtained by the Ritz variational and perturbational methods. The expression for the lowest-order transition matrix element is obtained by a two-photon process associated with terms quadratic in the vector potential A. The inelastic Compton scattering cross-section horn the 1s ground state to the 2p excited state is obtained as a function of the incident photon energy, Debye length, and the non-ideality plasma parameter. It is found that the collective effect reduces the cross-section. The collective effect on the cross-section is decreased with increasing Debye length.

Type
Research Article
Copyright
2002 Cambridge University Press