Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-06T00:47:53.088Z Has data issue: false hasContentIssue false

A mechanism for self-generated magnetic fields in the interaction of ultra-intense laser pulses with thin plasma targets

Published online by Cambridge University Press:  01 February 2009

A. ABUDUREXITI
Affiliation:
Physics Department, Xinjiang University, Urumqi, 830046, People's Republic of China Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan (okada@cc.tuat.ac.jp)
T. OKADA
Affiliation:
Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan (okada@cc.tuat.ac.jp)
S. ISHIKAWA
Affiliation:
Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan (okada@cc.tuat.ac.jp)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the study of the interaction of ultra-intense laser pulses with thin plasma targets there appears self-generated magnetic fields in the plasma target. The strong magnetic fields were directly measured in the plasma target, and were attributed to a mechanism of non-parallel electron temperature and density gradients. These magnetic fields can become strong enough to significantly affect the plasma transport. The underlying mechanism of the self-generated magnetic fields in the ultra-intense laser–plasma interactions is presented by using a two-dimensional particle-in-cell simulation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

References

[1]Okada, T., Andreev, A. A., Mikado, Y. and Okubo, K. 2006 Phys. Rev. E 74, 026401.CrossRefGoogle Scholar
[2]Mackinon, A. J., Sentoku, Y., Patel, P. K., Price, D. W., Hatchett, S., Key, M. H., Andersen, C., Snavely, R. and Freeman, R. R. 2002 Phys. Rev. Lett. 88, 215006.CrossRefGoogle Scholar
[3]Sentoku, Y., Mima, K., Sheng, Z. M., Kaw, P., Nishihara, K. and Nishikawa, K. 2002 Phys. Rev. E 65, 046408.Google Scholar
[4]Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., Mackinnon, A. and Snavely, R. A. 2001 Phys. Plasmas 8, 542.CrossRefGoogle Scholar
[5]Tatarakis, M., Gopal, A., Watts, I., Beg, F. N., Dangor, A. E., Kruselnick, K., Wagner, U., Norreys, P. A., Clark, E. L., Zepf, M. and Evans, R. G. 2002 Phys. Plasmas 9, 2244.CrossRefGoogle Scholar
[6]Haines, M. G. 1997 Phys. Rev. Lett. 78, 254.Google Scholar
[7]Tsintsadze, L. N. and Shukla, P. K. 1994 Phys. Lett. A 187, 67.CrossRefGoogle Scholar
[8]Sudan, R. N. 1993 Phys. Rev. Lett. 70, 3075.CrossRefGoogle Scholar
[9]Okada, T. and Ogawa, K. 2007 Phys. Plasmas 14, 072702.CrossRefGoogle Scholar
[10]Sugie, M., Ogawa, K. and Okada, T. 2006 Japan. J. Appl. Phys. 45, L1311.CrossRefGoogle Scholar
[11]Weibel, E. S. 1959 Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar
[12]Okada, T., Yabe, T. and Niu, K. 1977 J. Phys. Soc. Japan 43, 1042.CrossRefGoogle Scholar
[13]Yu, M. Y. and Shukla, P. K. 1978 Phys. Rev. A 18, 1591.CrossRefGoogle Scholar
[14]Shukla, P. K., Yu, M. Y. and Tsintsadze, N. L. 1984 Phys. Fluids 27, 327.CrossRefGoogle Scholar
[15]Yu, M. Y., Shukla, P. K. and Tsintsadze, N. L. 1982 Phys. Fluids 25, 1049.Google Scholar
[16]Shukla, P. K., Rao, N. N., Yu, M. Y. and Tsintsadze, N. L. 1986 Phys. Rep. 138, 1.CrossRefGoogle Scholar