Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-11T21:28:15.775Z Has data issue: false hasContentIssue false

Electron energization in lunar magnetospheres

Published online by Cambridge University Press:  20 August 2010

R. BINGHAM
Affiliation:
Rutherford Appleton Laboratory, Didcot OX11 0QX, UK (bob.bingham@stfc.ac.uk)
R. BAMFORD
Affiliation:
Rutherford Appleton Laboratory, Didcot OX11 0QX, UK (bob.bingham@stfc.ac.uk)
B. J. KELLETT
Affiliation:
Rutherford Appleton Laboratory, Didcot OX11 0QX, UK (bob.bingham@stfc.ac.uk)
V. D. SHAPIRO
Affiliation:
Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The interaction of the solar wind with lunar surface magnetic fields produces a bow shock and a magnetosphere-like structure. In front of the shock wave energetic electrons up to keV energies are produced. This paper describes how resonant interactions between plasma turbulence in the form of lower-hybrid waves and electrons can result in field aligned electron acceleration. The turbulent wave fields close to the lower-hybrid resonant frequency are excited most probably by the modified two-stream instability, driven by the solar wind ions that are reflected and deflected by the low shock.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

References

[1]Runcorn, S. K., Collinson, D. W., O'Reilly, W., Battey, M. H., Stephenson, A. A., Jones, J. M., Manson, A. J. and Readman, P. W. 1970 In: Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Ada Suppl 1, Vol. 3, p. 2369.Google Scholar
[2]Strangeway, D. W., Larson, E. E. and Pearce, C. W. 1970 In: Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Ada Suppl 1, Vol. 3, p. 2435.Google Scholar
[3]Dyal, P., Parkin, C. W. and Sonnet, C. P. 1970 Science 196, 762.CrossRefGoogle Scholar
[4]Dyal, P., Parkin, C. W. and Sonnet, C. P. 1971 NASA SP 272, 227.Google Scholar
[5]Coleman, P. J., Lichtenstein, B. R., Russell, C. T., Sharp, L. R. and Schubert, G. 1972 Proc. Lunar Planet. Sci. Conf. 3, 2271.Google Scholar
[6]Lin, R. R., Mitchell, D. L., Curtis, D. W., Anderson, K. A., Carlson, C. W., McFadden, J., Acuna, M. H., Hood, L. L. and Binder, A. 1998 Science 291, 1480.CrossRefGoogle Scholar
[7]Halekas, J. S., Brain, D. A., Lin, R. P. and Mitchell, D. L. 2007 Adv. Spa. Res. 41, 1319.CrossRefGoogle Scholar
[8]Halekas, J. S., Delory, G. T., Brain, D. A., Lin, R. P. and Mitchell, D. L. 2008 Planet. Spa. Sci. 56, 941.CrossRefGoogle Scholar
[9]Kivelson, M. G., Bargalzc, K., Khurana, L. K. K., Southwood, D. J., Walker, R. J. and Coleman, I. J. 1993 Science 261, 331.CrossRefGoogle Scholar
[10]Bingham, R., Dawson, J. M., Shapiro, V. D., Mendis, D. A. and Kellett, B. J. 1997 Science 275, 49.CrossRefGoogle Scholar
[11]Bingham, R. and Dawson, J. M. 1999 JGR 96, 9837.Google Scholar
[12]Shapiro, V. D., Bingham, R., Dawson, J. M., Kellett, B. J., Dobe, Z. and Mendis, D. A. 1999 JGR 104, 2537.CrossRefGoogle Scholar