Hostname: page-component-7b9c58cd5d-hpxsc Total loading time: 0 Render date: 2025-03-15T14:58:33.684Z Has data issue: false hasContentIssue false

Comparison of self-fields effects in two-stream electromagnetically pumped FEL with ion-channel guiding and axial magnetic field

Published online by Cambridge University Press:  27 May 2011

S. SAVIZ
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
H. MEHDIAN
Affiliation:
Department of Physics and Institute for Plasma Research, Tarbiat Moallem University, 49, Dr Mofatteh avenue, Tehran 15614, Iran.
FARZIN M. AGHAMIR
Affiliation:
Department of Physics, University of Tehran, N. Kargar Ave, Tehran 14399, Iran.
M. GHORANNEVIS
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
A. A. ASHKARRAN
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A theory of two-stream free-electron laser in a combined electromagnetic wiggler and an ion-channel guiding is developed. In the analysis, the electron trajectories and the small signal gain are derived by considering the effects of self-fields. Numerical calculations show that there are seven group's trajectories rather than nine groups reported in Mehdian and Saviz (2010 Chin. Phys. B 19(1), 014214). The comparison of the normalized gains and their corresponding normalized frequencies by employing the axial magnetic field and ion-channel guiding, with and without self-fields, in FEL has been studied numerically. The results show that the normalized maximum gain in FEL with axial magnetic is larger than that for using ion-channel guiding except in small region, but the results for their corresponding normalized frequencies are opposite.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

References

[1]Roberson, C. W. and Sprangle, P. 1980 Phys. Fluids B 1 (1), 3.CrossRefGoogle Scholar
[2]Jaber, I. and Demokan, O. 1996 Phys. Plasmas 3 (11), 4190.CrossRefGoogle Scholar
[3]Freund, H. P. and Sprangle, P. 1989 Phys. Rev. A 26, 2004.CrossRefGoogle Scholar
[4]Seo, Y. and Park, I. H. 1997 Phys. Plasmas 4 (11), 4176.CrossRefGoogle Scholar
[5]McNeil, B. W. J., Robb, G. R. and Poole, M. W. 2004 Phys. Rev. E 70, 035501(R).Google Scholar
[6]Freund, H. P., Douglas, D. and O'Shiea, P. G. 2003 Nucl. Instrum. Methods A 507, 373.CrossRefGoogle Scholar
[7]Wilhelmsson, H. 1991 Physica Scripta. 44, 603.CrossRefGoogle Scholar
[8]Botton, M. and Ron, A. 1990 J. Appl. Phys. 67 (10), 6583.CrossRefGoogle Scholar
[9]Mehdian, H. and Saviz, S. 2010 Chin. Phys. B 19 (1), 014214.CrossRefGoogle Scholar
[10]Takayama, K. and Hiramatsu, S. 1988 Phys. Rev. A 37, 173.CrossRefGoogle Scholar
[11]Raghavi, A., De Ninno, G. and Mehdian, H. 2008 Nucl. Instrum. Methods A. 591, 338.CrossRefGoogle Scholar
[12]Hwang, H. et al. 2002 Phy. Plasma 9 (3), 1010.CrossRefGoogle Scholar
[13]Jha, P. and Wurtele, J. S. 1993 Nucl. Instrum. Methods A. 331, 477.CrossRefGoogle Scholar