Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-05T22:46:50.921Z Has data issue: false hasContentIssue false

The first Cretaceous ophiopluteus skeleton (Echinodermata: Ophiuroidea)

Published online by Cambridge University Press:  28 July 2021

Mike Reich*
Affiliation:
SNSB—Bavarian State Collection of Palaeontology and Geology, Richard-Wagner-Straße 10, 80333Munich, Germany Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333Munich, Germany GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333Munich, Germany

Abstract

Larvae of sea urchins, brittle stars, and allies are common, ecologically important, and diverse members of marine ecosystems in all of the world's oceans today. In contrast to modern representatives, the fossil record of echinoderm larvae is poorly known. This study reports the first ophiopluteus skeleton from Cretaceous sediments worldwide, obtained from chalky sediment of the Isle of Wolin, NW Poland. The evidence presented here, that it is possible to isolate fossil echinoderm larval skeletons from rocks, indicates a hidden diversity of such fragile fossils and thus the possibility of direct geological recording.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Introduction

Marine invertebrate larvae have fascinated scientists for centuries, and their implications for animal evolution and ecology have been the object of study since Johannes Müller's initial work (Müller, Reference Müller1853) on echinoderm larvae (e.g., Lacalli, Reference Lacalli2000; Nielsen, Reference Nielsen, Carrier, Reitzel and Heyland2018). It has been recognized that all modern echinoderm representatives, such as sea urchins, starfish, and sea cucumbers, with the exception of crinoids (Nakano et al., Reference Nakano, Hibino, Oji, Hara and Amemiya2003), have feeding (planktotrophic) larvae composed of a distinctive body plan, whereas benthic, free-living feeding larvae are missing in echinoderms (McEdward and Miner, Reference McEdward and Miner2001). Lecithotrophic (non-feeding) larvae with benthic (or planktonic) habits have been reported in all modern echinoderm representatives (e.g., McEdward and Miner, Reference McEdward and Miner2001; Arnone et al., Reference Arnone, Byrne, Martinez and Wanninger2015). All of these types of echinoderm larvae have unique morphologies, and, with the exception of the asteroid bipinnaria (Fig. 1.1), a calcitic skeleton (e.g., Pennington and Strathmann, Reference Pennington and Strathmann1990; Smith, Reference Smith1997; Raff and Byrne, Reference Raff and Byrne2006). The pluteus of ophiuroids and echinoids has long arms supported by skeletal rods (Fig. 1.3–1.5) that greatly extend the ciliary bands, while the shorter-armed bipinnaria and auricularia characterize asteroids and holothuroids, respectively. In addition, the auricularia of sea cucumbers (Fig. 1.2) is unique in possessing distinct wheel-shaped ossicles (Metschnikoff, Reference Metschnikoff1869; Mortensen, Reference Mortensen and Hensen1898, Reference Mortensen and Drygalski1913, Reference Mortensen1920, Reference Mortensen1921, Reference Mortensen1931, Reference Mortensen1937, Reference Mortensen1938; Dan, Reference Dan, Kumé and Dan1968; Hendler, Reference Hendler, Giese, Pearse and Pearse1991; Holland, Reference Holland, Giese, Pearse and Pearse1991; Smiley et al., Reference Smiley, McEuen, Chafee, Krishnan, Giese, Pearse and Pearse1991; Balser, Reference Balser and Young2002; Byrne and Selvakumaraswamy, Reference Byrne, Selvakumaraswamy and Young2002; Emlet et al., Reference Emlet, Young, George and Young2002; McEdward et al., Reference McEdward, Jaeckle, Komatsu and Young2002; Sewell and McEuen, Reference Sewell, McEuen and Young2002).

Figure 1. Modern echinoderm larvae. All polarized light micrographs (crossed nicols). (1) Bipinnaria (Asteroidea); larval stage of Asterias rubens (Linnaeus, Reference Linnaeus1758) (ZMUC TM-F/45)—Strib, Kattegat (collected in 1879). (2) Auricularia (Holothuroidea); giant larva ‘Auricularia nudibranchiata Chun’; larval stage of Protankyra brychia (Verrill) (ZMUC TM-F/36)—Misaki, Sagami Bay (collected in 1899). (3) Fully formed echinopluteus (Echinoidea); larval stage of Heterocentrotus mamillatus (Linnaeus, Reference Linnaeus1758) (ZMUC TM-F/51)—Hurghada, Red Sea (collected in 1936). (4) Six-armed ophiopluteus (Ophiuroidea) [‘Ophiopluteus mancus Mortensen’]; larval stage of Amphiura filiformis (O.F. Müller, Reference Müller1776) (ZMUC TM-E/86)—Kristineberg, Gullmarfjord (collected in 1918). (5) Not fully formed ophiopluteus (Ophiuroidea); larval stage of Macrophiothrix propinqua (Lyman, Reference Lyman1861) (ZMUC TM-E/100)—Hurghada, Red Sea (collected in 1936). Note wheel-shaped ossicles of holothuroid auricularia (2) and skeletal rods in plutei (3–5). All specimens from (permanent) microscopic slides mounted with Canada Balsam stored in T. Mortensen collection at ZMUC. Abbreviations in white letters: fr = fenestrated skeletal rods; ufr = unfenestrated skeletal rods; lwo = larval wheel ossicles. Abbreviations in black letters: al = anterolateral rod; b = body rod; da = dorsal arch; e = end rod; pd = posterodorsal rod; pl = posterolateral rod; po = postoral rod; pr = preoral arm; ptr = posterior transverse rod; r = recurrent rod; tr = transverse rod; vtr = ventral transverse rod. Scale bar = 500 μm.

Anyone working with Recent echinoderm larvae would probably consider preservation and fossilization to be unlikely, given their apparent fragility and size. Taphonomic studies, such as those on sea urchin embryos and larvae by Raff et al. (Reference Raff, Villinski, Turner, Donoghue and Raff2006), showed that larval skeletal elements can be preserved under non-reduced and normal sea water conditions, giving echinoderm larvae the potential to fossilize, for example, as proposed by Wray (Reference Wray1992).

Echinoderms have an excellent fossil record since the Cambrian (Lefebvre et al., Reference Lefebvre, Sumrall, Shroat-Lewis, Reich and Webster2013; Zamora et al., Reference Zamora, Lefebvre, Álvaro, Clausen, Elicki, Harper and Servais2013; Reich et al., Reference Reich, Stegemann, Hausmann, Roden and Nützel2018), making them ideal subjects for investigating larval skeletons and patterns and processes of life history evolution. However, not much attention has been paid to fossil larvae or larval skeletons of Echinodermata (Williamson, Reference Williamson2013). Apart from some misinterpreted fossils from the Palaeozoic (e.g., Fritsch, Reference Fritsch1908) and Mesozoic (e.g., Girard et al., Reference Girard, Schmidt, Saint Martin, Struwe and Perrichot2008), some larval skeletons from ophioplutei and echinoplutei (Ophiuroidea, Echinoidea) were briefly described or figured from early (Rioult, Reference Rioult1959) and late (Deflandre-Rigaud, Reference Deflandre-Rigaud1946; refigured and interpreted in Sieverts-Doreck, Reference Sieverts-Doreck and Freund1958; Kryuchkova and Solov'yev, Reference Kryuchkova and Solov'yev1975; Solovjev, Reference Solovjev2014) Jurassic sediments of Normandy, France. In addition, a few larval ossicles of Holothuroidea were reported from European Triassic (Gilliland, Reference Gilliland1993), Jurassic (Gilliland, Reference Gilliland1992; Reich and Stegemann, Reference Reich and Stegemann2012), and Cretaceous (Reich, Reference Reich2003) strata (see Table 1 and Fig. 3).

Figure 3. Summary of fossil record of modern echinoderm larvae (Crinoidea, Asteroidea, Ophiuroidea, Echinoidea, Holothuroidea), based on data presented in Table 1. Gray vertical bar in Lower Cretaceous (ca. 110 Ma) highlights first appearance of representatives of Ophiuridae (Ophiurida), Ophiocomidae (Ophiacanthida), Amphiuridae, Ophiactidae, and Ophiotrichidae (latter all Amphilepidida; systematics after O'Hara et al., Reference O'Hara, Hugall, Thuy, Stöhr and Martynov2017)—modern ophiuroid families in which ophioplutei occur. Stratigraphic position of first Cretaceous ophiopluteus described herein indicated by (red) asterisk.

Table 1. Fossil larval skeletons of modern echinoderm representatives reported in the scientific literature (in stratigraphic order, revisions included).

Thus, the current available fossil record of echinoderm larvae is essentially nonexistent (Jablonski and Lutz, Reference Jablonski and Lutz1983) and biased due to missing studies or lack of awareness of such small and fragile microfossils. However, modified micropaleontological techniques and/or the detailed study of residues below 100 μm have the promise to provide a much better fossil record for skeletal elements of echinoderm larvae, and therefore yield insights into developmental modes during echinoderm evolution (Bottjer et al., Reference Bottjer, Davidson, Peterson and Cameron2006). Here, I explore this issue, presenting a promising first example for future focused studies.

Materials and methods

This study is based on a single specimen from partly silicified limestones (cherty limestones, according to other authors) embedded in Late Cretaceous chalk. The material is very well preserved due to the fact that the silicification process caused by weakly acidic environmental conditions started very early diagenetically before sediment compaction (Herrig, Reference Herrig1982, Reference Herrig1993). After processing these sediments with hydrofluoric acid (HF; e.g., Schallreuter, Reference Schallreuter, Bate, Robinson and Sheppard1982), the (SiO2-impregnated) sediment matrix was dissolved and all the calcareous material was (secondarily) changed into calcium fluoride (CaF2). The method has been used to great effect in extracting calcareous microfossils from otherwise unyielding rocks, such as Late Cretaceous cherty chalk or the Late Ordovician Backstein (‘Brick’) limestone and Öjlemyr flint (all in the Baltic Sea area). The treatment of these kinds of cherty limestones resulted in large amounts of excellent, well-preserved ostracode (e.g., Schallreuter, Reference Schallreuter1971; Herrig, Reference Herrig1994, Reference Herrig2004; Schallreuter and Hinz-Schallreuter, Reference Schallreuter and Hinz-Schallreuter2013; Horne and Siveter, Reference Horne and Siveter2016) and echinoderm (e.g., Schallreuter, Reference Schallreuter1975; Reich, Reference Reich1995, Reference Reich2002, Reference Reich2010) material, among these numerous rarely found groups from the fossil record, making this ‘preservational window’ unique to science. The fluoridization process mentioned above normally results in replication of even the finest details of the former calcium carbonate shell or ossicle, such as fine pores or fragile spines (Reich, Reference Reich2014, p. 9–11). The focus of this method is different from the simple fluoridization process used (e.g., Sohn, Reference Sohn1956; Lane and Sevastopulo, Reference Lane and Sevastopulo1981) to get translucent or clean microfossils.

To date, this special extraction method used here was largely neglected and often misunderstood with regard to detailed disaggregation of the cherty limestones, as well as the transformation and preservation of calcareous fossils after treatment (e.g., Melnikova et al., Reference Melnikova, Tolmacheva and Ushatinskaya2010). The method used in the present study should not be mistaken for another hydrofluoric acid treatment (Pessagno and Newport, Reference Pessagno and Newport1972) used to extract siliceous microfossils such as radiolarians from compact cherts or flints. The main difference consists in the host rock: partly silicified limestone or chalk versus pure chert or radiolarite.

Locality and stratigraphic information

The partly silicified limestone was collected in 1994 at a small, abandoned chalk quarry near Kępa (Kamp; 53°52'44.93″N, 14°27'21.13″E), ~1.0 km northeast of the classic outcrop of the ‘Wolin Chalk’ between Lubin (Lebbin) and Wapnica (Kalkofen) (e.g., von Hagenow and Borchardt, Reference von Hagenow and Borchardt1850; Behrens, Reference Behrens1878; Deecke, Reference Deecke1907; Böhm, Reference Böhm1920; Alexandrowicz, Reference Alexandrowicz1966). The island of Wolin (Wollin) is located in the Odra River mouth, north of Szczecin (Stettin), NW Poland. The age of the chalk, based on its macro- and microfossil content, is late Turonian—Subprionocyclus neptuni ammonite zone, ca. 90 Ma (stratigraphic overview in Reich and Wiese, Reference Reich and Wiese2010).

Micropaleontological preparation techniques and documentation

Echinoderm ossicles from partly silicified limestones were isolated by a special micropaleontological method (see above), using 30–35% HF (see details in Wissing et al., Reference Wissing and Herrig1999, p. 42–44). After sufficient washing and careful sieving (sieve sizes: 0.03, 0.063, 0.1, and 1.0 mm), the residues were dehydrated at a temperature of ~70°C. All specimens were first picked and studied under a binocular microscope, and later mounted on stubs and gold-coated for investigation and imaging using a desktop scanning electron microscope (Phenom XL G2; Thermo Fisher Scientific).

The modern larval specimens for comparison were documented photographically using a digital microscope and camera equipment (Keyence VHX-7000); image stacks were prepared from up to five focal planes.

Repositories and institutional abbreviations

The figured fossil specimen is deposited at the Bavarian State Collection of Palaeontology and Geology (SNSB-BSPG), Munich, Germany. Deflandre-Rigaud's fossil echinoderm material is part of the micropaleontological collection at the Muséum National d'Histoire Naturelle in Paris (MNHN). Additional modern larval material figured is part of the Theodor Mortensen collection at the Natural History Museum of Denmark, University of Copenhagen (ZMUC).

Systematic paleontology

Abbreviations as in Figure 1 (nomenclature modified from Mortensen, Reference Mortensen1921).

Class Ophiuroidea Gray, Reference Gray1840
incerti ordinis
incertae familiae

Ophiopluteus, gen. and sp. A
Figure 2.1–2.3

Figure 2. Late Cretaceous ophiopluteus in comparison with modern body skeletons. (1–3) Ophiopluteus, gen. and sp. A, right part of body skeleton (SNSB-BSPG 2020 XXXIX 5) from late Turonian chalk of Kępa, Isle of Wolin, NW Poland: (1) inner view; (2) inner oblique view; (3) lateral oblique view. Note small thorns at rods (black arrows). All scanning electron micrographs (specimen covered with coccoliths in part). (4, 5) ‘Ophiopluteus arcifer’ Mortensen, Reference Mortensen1921, Recent (linked adult species unknown), compound body skeleton (left part = light gray; right part = dark gray; median processes = white) reported from Gulf of Siam, Strait of Malacca, and off Jolo, Philippines (modified from Mortensen, Reference Mortensen1921). Abbreviations: al = anterolateral rod; b = body rod; dm = dorsal median process; dr = dorsal recurrent rod; dtr = dorsal transverse rod; e = end rod; pd = posterodorsal rod; pl = posterolateral rod; po = postoral rod; vm = ventral median process; vr = ventral recurrent rod; vtr = ventral transverse rod.. Scale bars = 50 μm (1–3), and 100 μm (4, 5).

Description

The partially preserved body skeleton (bs) is fairly robust and of compound type. Only the right part of the body skeleton is present (Fig. 2.1–2.3). Dorsal and ventral median processes are missing. The anteriorly directed, unfenestrated posterolateral (pl), anterolateral (al), posterodorsal (pd), and postoral (po) rods are partly broken off (Fig. 2.1), but with recurrent (r) and body (b) rods, as well as the other respective rod onsets, the main part of the body skeleton is still preserved. The incomplete posterolateral rod is set with bilaterally arranged small thorns (Fig. 2.1) and is circular in cross section (Fig. 2.3); the posterodorsal rod also has small thorns along the inner side (Fig. 2.3). The anterolateral and posterodorsal rods are somewhat erect, projecting to the center of the whole complex skeleton (Fig. 2.2). The short end rod (e), both transverse rods (tr), and the postoral rod are broken off. The body rod forms an angle of ~90° in cross section together with the dorsal and ventral recurrent rods. This structure is much longer than wide.

Material

SNSB-BSPG 2020 XXXIX 5, only known specimen from the late Turonian chalk of Kępa, Isle of Wolin, NW Poland.

Remarks

The assumed body length of this larva type is at least 0.17 mm. The incompleteness of the ophiopluteus skeleton described here with some processes broken off probably arose from handling during micropaleontological sieving and apparently does not have any taphonomic or diagenetic causes.

Modern ophioplutei occur only in the Ophiurida (Ophiuridae), Ophiacanthida (Ophiocomidae), and Amphilepidida (Amphiuridae, Ophiactidae, Ophiotrichidae) (McEdward and Miner, Reference McEdward and Miner2001; systematics after O'Hara et al., Reference O'Hara, Hugall, Thuy, Stöhr and Martynov2017). The following two main types can be distinguished within modern forms (Mortensen, Reference Mortensen1921): (1) simple body skeleton, having single body rods (b) only; and (2) compound body skeleton, a ventral (vr) and a dorsal (dr) recurrent rod forming together with the body rods (b) two coarse meshes in each side (left and right) of the body (Fig. 2.5).

The size and general shape of the above-described fossil ophiopluteus body skeleton most resemble the Recent ‘Ophiopluteus arcifer’ Mortensen, Reference Mortensen1921, reported from the Caribbean Sea, the Gulf of Panama, the Gulf of Siam, and the Strait of Malacca (Mortensen, Reference Mortensen1921, p. 158). Unfortunately, since the adult of this type of ophiopluteus is not yet documented (M. Byrne, written communication, 2020), an assignment of the Turonian ophiopluteus body skeleton to an ophiuroid order or family is not possible. Similar unidentified modern ophioplutei that have been sampled in the mid-ocean may be teleplanic (Hendler, Reference Hendler, Giese, Pearse and Pearse1991). Because ophioplutei in littoral waters normally reflect the benthic adult population (e.g., Rees, Reference Rees1954), these unidentified open sea ophioplutei are probably related to a deep-sea ophiuroid with essentially cosmopolitan distribution (Pacific and Atlantic Ocean), as similarly reported for bathyal/abyssal sea cucumbers (e.g., Protankyra brychia [Verrill, Reference Verrill1885] versus ‘Auricularia nudibranchiata’; Pawson et al., Reference Pawson, Gage, Belyaev, Mironov and Smirnov2003).

The mentioned type of modern ophiopluteus (‘Ophiopluteus arcifer’ Mortensen, Reference Mortensen1921) is somewhat narrower than the fossil one described herein, and the anterolateral and posterodorsal rods project in an anterior direction as do the posterolateral and postoral rods. The Cretaceous ophiopluteus skeleton is comparable to Upper Jurassic (lower Oxfordian) material described by Deflandre-Rigaud (Reference Deflandre-Rigaud1946; deposited at the MNHN). However, the structure formed by the body and recurrent rods is quadrangular, not rectangular, in shape (Fig. 3). Other published material from Pleistocene and Holocene sediments (Deep Sea Drilling Project) of the Cariaco Trench off Venezuela (Rögl and Bolli, Reference Rögl, Bolli, Edgar, Kaneps and Herring1973; misinterpreted as echinoplutei) shows that this ophiopluteus type in general apparently had a much greater diversity in Mesozoic and Cenozoic times than previously known. By reshaping the main skeletal structure from quadrangular to rectangular with different angles, it seems there have been evolutionary changes in which the body length of larvae is extended and the body flattened.

Conclusions

The late Turonian ophiopluteus body skeleton from NW Poland described herein originated from a larva of unknown ophiuroid species with a (?near-surface) planktotrophic larval stage. The fossil specimen is morphologically similar to a type of modern ophioplutei described by Mortensen (Reference Mortensen1921) that can probably be linked to deep-sea ophiuroid species. The new finding represents the first report of a Cretaceous ophiopluteus, which provides a window into the poorly known fossil record of echinoderm larvae.

Acknowledgments

Many thanks to M. Byrne, Sydney, Australia for additional information on the systematic status of Mortensen's published ophioplutei. T. Stegemann, Regensburg, Germany is thanked for comments on an earlier draft, A. Kroh, Vienna, Austria for discussions, and J. Ansorge, Greifswald, Germany, for technical help. J. Olesen and T. Schiøtte, Copenhagen, Denmark kindly provided access to the Mortensen collection, as well as A. Bartolini, Paris, France to the Deflandre-Rigaud collection. My stay at ZMUC and MNHN was financed in part by Synthesys grants (DK-TAF-3795, FR-TAF-1618), a program financed by European Community Research Infrastructure Action. In addition, the presented research was funded in part by an ‘SNSB innovativ grant’ (Bayerischer Pakt für Forschung und Innovation—BayPFI) funded by the StMWK (Bayerisches Staatsministerium für Wissenschaft und Kunst). Finally, the manuscript was greatly improved by helpful comments from reviewers S. Stöhr and L.G. Zachos, as well as editors R. Mooi and J. Jin.

References

Alexandrowicz, Z., 1966, Utwory kredowe w krach glacjalnych na wyspie Wolin i w okolicy Kamienia Pomorskiego: Prace Geologiczne, Komisja Nauk Geologicznych, Polska Akademia Nauk, v. 35, p. 1103.Google Scholar
Arnone, M.I., Byrne, M., and Martinez, P., 2015, Echinodermata, in Wanninger, A., ed., Evolutionary Developmental Biology of Invertebrates 6: Deuterostomia: Wien, Springer, p. 158. https://doi.org/10.1007/978-3-7091-1856-6_1.Google Scholar
Balser, E.J., 2002, Phylum Echinodermata: Crinoidea, in Young, C.M., ed., Atlas of Marine Invertebrate Larvae: San Diego, Academic Press, p. 463482.Google Scholar
Behrens, G., 1878, Ueber die Kreideablagerungen auf der Insel Wollin: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 30, p. 229267.Google Scholar
Böhm, J., 1920, Echinocorys Franciscae nov. sp. und die turone Fauna von Lebbin und Kalkofen auf Wollin: Jahrbuch der Preußischen Geologischen Landesanstalt (Neue Folge), v. 38 [1918] (II), p. 148153. [preprints published in 1919]Google Scholar
Bottjer, D.J., Davidson, E.H., Peterson, K.J., and Cameron, R.A., 2006, Paleogenomics of echinoderms: Science, v. 314, p. 956960. https://doi.org/10.1126/science.1132310.CrossRefGoogle ScholarPubMed
Byrne, M., and Selvakumaraswamy, P., 2002, Phylum Echinodermata: Ophiuroidea, in Young, C.M., ed., Atlas of Marine Invertebrate Larvae: San Diego, Academic Press, p. 483498.Google Scholar
Dan, K., 1968, Echinoderma, in Kumé, M., and Dan, K., eds., Invertebrate Embryology: Belgrade, Prosveta Press, p. 280–315, 329331.Google Scholar
Deecke, W., 1907, Geologie von Pommern: Berlin, Gebr. Borntraeger, 302 p.Google Scholar
Deflandre-Rigaud, M., 1946, Vestiges microscopiques des larves d'Echinodermes de l'Oxfordien de Villers-sur-Mer: Comptes Rendus des Séances de l'Académie des Sciences, v. 222, p. 908910.Google Scholar
Deflandre-Rigaud, M., 1950, Les sclérites rotiformes des Holothurides fossiles: Annales de Paléontologie, v. 36, p. 145.Google Scholar
Emlet, R.B., Young, C.M., and George, S.B., 2002, Phylum Echinodermata: Echinoidea, in Young, C.M., ed., Atlas of Marine Invertebrate Larvae: San Diego, Academic Press, p. 531551.Google Scholar
Fritsch, A., 1908, Über eine Echinodermenlarve aus dem Untersilur Böhmens: Zoologischer Anzeiger, v. 33, p. 797798.Google Scholar
Gaździcki, A., Kozur, H., Mock, R., and Trammer, J., 1978, Triassic microfossils from the Korytnica limestones at Liptovská Osada (Slovakia, ČSSR) and their stratigraphic significance: Acta Palaeontologica Polonica, v. 23, p. 351373.Google Scholar
Gilliland, P.M., 1992, Holothurians in the Blue Lias of southern Britain: Palaeontology, v. 35, p. 159210.Google Scholar
Gilliland, P.M., 1993, The skeletal morphology, systematics and evolutionary history of holothurians: Special Papers in Palaeontology, v. 47, 147 p.Google Scholar
Girard, V., Schmidt, A.R., Saint Martin, S., Struwe, S., Perrichot, V., et al. , 2008, Evidence for marine microfossils from amber: PNAS, v. 105, p. 1742617429. https://doi.org/10.1073/pnas.0804980105.CrossRefGoogle ScholarPubMed
Gray, J.E., 1840, A synopsis of the genera and species of the class Hypostoma (Asterias, Linnæus): Annals and Magazine of Natural History (ser. 1), v. 6, p. 275290. https://doi.org/10.1080/03745484009443282.CrossRefGoogle Scholar
Hendler, G., 1991, Echinodermata: Ophiuroidea, in Giese, A.C., Pearse, J.S., and Pearse, V.B., eds., Reproduction of Marine Invertebrates. Volume VI. Echinoderms and Lophophorates: Pacific Grove, The Boxwood Press, p. 355511.Google Scholar
Herrig, E., 1982, Zur Erhaltung von kalkschaligen Mikrofossilien in verkieselten Sedimenten, dargestellt am Flint aus der Schreibkreide (Unter-Maastricht) der Insel Rügen: Zeitschrift für Geologische Wissenschaften, v. 10, p. 13571379.Google Scholar
Herrig, E., 1993, The preservation of ostracod shells in siliceous chalk of the Danish-Polish Furrow (Baltic Sea): Facies, v. 28, p. 7786. https://doi.org/10.1007/BF02539729.CrossRefGoogle Scholar
Herrig, E., 1994, Polycopidae (Crustacea, Ostracoda) aus der borealen Oberkreide des mittleren und südlichen Ostseeraumes: Paläontologische Zeitschrift, v. 68, p. 351359. https://doi.org/10.1007/BF02991348.CrossRefGoogle Scholar
Herrig, E., 2004, Neue Oberkreide-Ostrakoden aus Pleistozän-Geschieben: Bythocytheridae und Paradoxostomatidae: Archiv für Geschiebekunde, v. 4, p. 279304.Google Scholar
Holland, N.D., 1991, Echinodermata: Crinoidea, in Giese, A.C., Pearse, J.S., and Pearse, V.B., eds., Reproduction of Marine Invertebrates. Volume VI. Echinoderms and Lophophorates: Pacific Grove, The Boxwood Press, p. 247299.Google Scholar
Horne, D.J., and Siveter, D.J., 2016, Collecting and processing fossil ostracods: Journal of Crustacean Biology, v. 36, p. 841848. https://doi.org/10.1163/1937240X-00002487.Google Scholar
Jablonski, D., and Lutz, R.A., 1983, Larval ecology of marine benthic invertebrates: paleobiological implications: Biological Reviews, v. 58, p. 2189.CrossRefGoogle Scholar
Kryuchkova, G.A., and Solov'yev, A.N., 1975, O lichinochnoy stadii morskikh ezhey: Paleontologicheskiy Zhurnal, v. [1975] (4), 6371. [in Russian]Google Scholar
Lacalli, T.C., 2000, Larval budding, metamorphosis, and the evolution of life-history patterns in echinoderms: Invertebrate Biology, v. 119, p. 234241. https://doi.org/10.1111/j.1744-7410.2000.tb00010.x.CrossRefGoogle Scholar
Lane, N.G., and Sevastopulo, G.D., 1981, Functional morphology of a microcrinoid: Kallimorphocrinus punctatus n. sp.: Journal of Paleontology, v. 55, p. 1328.Google Scholar
Lefebvre, B., Sumrall, C.D., Shroat-Lewis, R.A., Reich, M., Webster, G.D., et al. , 2013, Palaeobiogeography of Ordovician echinoderms, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic Biogeography and Palaeogeography: Geological Society of London, Memoir, v. 38, 173198. https://doi.org/10.1144/M38.14.CrossRefGoogle Scholar
Linnaeus, C., 1758, Systema Naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis locis. Tomus I. Editio decima, reformata: Holmiæ [=Stockholm], Laurentius Salvius, 824 p.CrossRefGoogle Scholar
Lyman, T., 1861, Descriptions of new Ophiuridæ: Proceedings of the Boston Society of Natural History, v. 8, p. 7586.CrossRefGoogle Scholar
McEdward, L.R., and Miner, B.G., 2001, Larval and life-cycle patterns in echinoderms: Canadian Journal of Zoology, v. 79, p. 11251170. https://doi.org/10.1139/cjz-79-7-1125.CrossRefGoogle Scholar
McEdward, L.R., Jaeckle, W.B., and Komatsu, M., 2002, Phylum Echinodermata: Asteroidea, in Young, C.M., ed., Atlas of Marine Invertebrate Larvae: San Diego, Academic Press, p. 499512.Google Scholar
Melnikova, L.M., Tolmacheva, T.Y., and Ushatinskaya, G.T., 2010, Find of Tremadocian ostracodes in cherts of Kazakhstan: Paleontological Journal, v. 44, p. 3640.CrossRefGoogle Scholar
Metschnikoff, E., 1869, Studien über die Entwickelung der Echinodermen und Nemertinen: Mémoires de l'Académie Impériale des Sciences de St.-Pétersbourg (VIIe série), v. XIV (8), 73 p.Google Scholar
Mortensen, T., 1898, Die Echinodermen-Larven der Plankton-Expedition nebst einer systematischen Revision der bisher bekannten Echinodermenlarven, in Hensen, V., ed., Ergebnisse der im Atlantischen Ocean von Mitte Juli bis Anfang November 1889 ausgeführten Plankton-Expedition der Humboldt-Stiftung, volume II: Kiel, Lipsius, and Leipzig, Tischer, 120 p.Google Scholar
Mortensen, T., 1913, Die Echinodermenlarven der Deutschen Südpolar-Expedition 1901–1903, in Drygalski, E. von, ed., Deutsche Südpolar-Expedition, volume 14, issue 1, part 3, [=Deutsche Südpolar-Expedition: Zoologie, volume 6, issue 1, part 3]: Berlin, G. Reimer, p. 67111.Google Scholar
Mortensen, T., 1920, Studies in the development of crinoids: Papers from the Tortuga Laboratory of the Carnegie Institution of Washington, v. 16, 94 p. [=Carnegie Institution of Washington, Publication, v. 294]Google Scholar
Mortensen, T., 1921, Studies of the Development and Larval Forms of Echinoderms: Copenhagen, G.E.C. Gad, 261 p.CrossRefGoogle Scholar
Mortensen, T., 1931, Contributions to the study of the development and larval forms of echinoderms I–II: Det Kongelige Danske Videnskabernes Selskabs Skrifter (Naturvidenskabelig og mathematisk Afdeling, 9de Række) [=Mémoires de l'Académie Royale des Sciences et des Lettres de Danemark, Copenhague, Section des Sciences, 9me série], v. IV, 39 p.Google Scholar
Mortensen, T., 1937, Contributions to the study of the development and larval forms of echinoderms III: Det Kongelige Danske Videnskabernes Selskabs Skrifter (Naturvidenskabelig og mathematisk Afdeling, 9de Række) [=Mémoires de l'Académie Royale des Sciences et des Lettres de Danemark, Copenhague, Section des Sciences, 9me série], v. VII, 65 p.Google Scholar
Mortensen, T., 1938, Contributions to the study of the development and larval forms of echinoderms IV: Det Kongelige Danske Videnskabernes Selskabs Skrifter (Naturvidenskabelig og mathematisk Afdeling, 9de Række) [=Mémoires de l'Académie Royale des Sciences et des Lettres de Danemark, Copenhague, Section des Sciences, 9me série], v. VII, 59 p.Google Scholar
Müller, J., 1853, Über den allgemeinen Plan in der Entwickelung der Echinodermen: Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin (Physikalische Abhandlungen) v. [1852], p. 2565.Google Scholar
Müller, O.F., 1776, Zoologiæ Danicæ Prodromus, seu Animalium Daniæ et Norvegiæ indigenarum charcateres, nomina, et synonyma imprimis popularium: Havniæ [=Copenhagen], Hallageri, 824 p.CrossRefGoogle Scholar
Nakano, H., Hibino, T., Oji, T., Hara, Y., and Amemiya, S., 2003, Larval stages of a living sea lily (stalked crinoid echinoderm): Nature, v. 421, p. 158160. https://doi.org/10.1038/nature01236.CrossRefGoogle Scholar
Nielsen, C., 2018, Origin and diversity of marine larvae, in Carrier, T.J., Reitzel, A.M., and Heyland, A., eds., Evolutionary Ecology of Marine Invertebrate Larvae: Oxford, Oxford University Press, p. 315. https://doi.org/10.1093/oso/9780198786962.003.0001.Google Scholar
O'Hara, T.D., Hugall, A.F., Thuy, B., Stöhr, S., and Martynov, A.V., 2017, Restructuring higher taxonomy using broad-scale phylogenomics: the living Ophiuroidea: Molecular Phylogenetics and Evolution, v. 107, p. 415430. https://doi.org/10.1016/j.ympev.2016.12.006.CrossRefGoogle ScholarPubMed
Pawson, D.L., Gage, J.D., Belyaev, G.M., Mironov, A.N., and Smirnov, A.V., 2003, The deep sea synaptid Protankyra brychia (Echinodermata: Holothuroidea) and its near-surface dwelling planktotrophic larva, Auricularia nudibranchiata: Sarsia, v. 88, p. 159174. https://doi.org/10.1080/00364820310001165.CrossRefGoogle Scholar
Pennington, J.T., and Strathmann, R.R., 1990, Consequences of the calcite skeletons of planktonic echinoderm larvae for orientation, swimming, and shape: The Biological Bulletin, v. 179, p. 121133. https://doi.org/10.2307/1541746.CrossRefGoogle ScholarPubMed
Pessagno, E.A. Jr., and Newport, R.L., 1972, A technique for extracting Radiolaria from radiolarian cherts: Micropaleontology, v. 18, p. 231234.CrossRefGoogle Scholar
Raff, E.C., and Byrne, M., 2006, The active evolutionary lives of echinoderm larvae: Heredity, v. 97, p. 244255. https://doi.org/10.1038/sj.hdy.6800866.CrossRefGoogle ScholarPubMed
Raff, E.C., Villinski, J.A., Turner, F.R., Donoghue, P.C., and Raff, R.A., 2006, Experimental taphonomy shows the feasibility of fossil embryos: PNAS, v. 103, p. 58465851. https://doi.org/10.1073/pnas.0601536103.CrossRefGoogle ScholarPubMed
Rak, Š., Ortega-Hernández, J., and Legg, D.A., 2013, A revision of the Late Ordovician marrellomorph arthropod Furca bohemica from Czech Republic: Acta Palaeontologica Polonica, v. 58, 615628. https://doi.org/10.4202/app.2011.0038.Google Scholar
Rees, C.B., 1954, Continuous plankton records: the distribution of echinoderm and other larvae in the North Sea: Bulletins of Marine Ecology, v. 4, 4767.Google Scholar
Reich, M., 1995, Erster sicherer Nachweis der Elasipoda (Holothuroidea, Echinodermata) aus der Kreide, sowie Bemerkungen zu den Holothurienresten der Oberkreide: Archiv für Geschiebekunde, v. 1, 681688.Google Scholar
Reich, M., 2002, Holothurien (Echinodermata) aus der Oberkreide des Ostseeraumes: Teil 1. Myriotrochidae Théel, 1877: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 224, p. 373409. https://doi.org/10.1127/njgpa/224/2002/373.CrossRefGoogle Scholar
Reich, M., 2003, Holothurien (Echinodermata) aus der Oberkreide des Ostseeraumes: Teil 4. Synaptidae Burmeister, 1837: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 229, p. 7595. https://doi.org/10.1127/njgpa/229/2003/75.CrossRefGoogle Scholar
Reich, M., 2010, The oldest synallactid sea cucumber (Echinodermata: Holothuroidea: Aspidochirotida) : Paläontologische Zeitschrift, v. 84, p. 541546. https://doi.org/10.1007/s12542-010-0067-8.CrossRefGoogle Scholar
Reich, M., 2014, Phanerozoic Echinozoan Echinoderms. Palaeobiology, Phylogeny and Evolutionary History: New Evidences from Micropalaeontology and Fossil Lagerstätten [Habilitation Thesis]: Göttingen, Faculty of Geosciences and Geography, Georg-August University Göttingen, 276 p.Google Scholar
Reich, M., and Wiese, F., 2010, Apodid sea cucumbers (Echinodermata: Holothuroidea) from the upper Turonian of the Isle of Wolin, NW Poland: Cretaceous Research, v. 31, p. 350363. https://doi.org/10.1016/j.cretres.2010.03.001.CrossRefGoogle Scholar
Reich, M., and Stegemann, T.R., 2012, Giant Mesozoic holothurian larvae?: Terra Nostra, v. 2012/3, p. 138139.Google Scholar
Reich, M., Stegemann, T., Hausmann, I.M., Roden, V.J., and Nützel, A., 2018, The youngest ophiocistioid: a first Palaeozoic-type echinoderm group representative from the Mesozoic: Palaeontology, v. 61, p. 803811. https://doi.org/10.1111/pala.12392.CrossRefGoogle Scholar
Rioult, M., 1959, Les vestiges microscopiques d'Echinodermes dans les sédiments jurassiques de Normandie: Bulletin de la Société Linnéenne de Normandie (9e Série), v. 10, p. 3236.Google Scholar
Rögl, F., and Bolli, H.M., 1973, Holocene to Pleistocene planktonic Foraminifera of Leg 15, Site 147 (Cariaco Basin [Trench], Caribbean Sea) and their climatic interpretation, in Edgar, N.T., Kaneps, A.G., and Herring, J.R., eds., Leg 15 of the Cruises of the Drilling Vessel Glomar Challenger San Juan, Puerto Rico to Cristobal, Panama December 1970–February 1971: Initial Reports of the Deep Sea Drilling Project, v. 15, p. 553615. https://doi.org/10.2973/dsdp.proc.15.113.1973.Google Scholar
Schallreuter, R., 1971, Ostrakoden aus Öjlemyrgeschieben (Ordoviz): Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. [1971] (7), p. 423431.Google Scholar
Schallreuter, R., 1975, Ein neuer ordovizischer Holothuriensklerit aus Öjlemyrgeschieben der Insel Gotland: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. [1975] (2), p. 727733.Google Scholar
Schallreuter, R., 1982, Extraction of ostracods from siliceous rocks, in Bate, R.H., Robinson, E., and Sheppard, L.M., eds., Fossil and Recent Ostracods. (British Micropalaeontological Society Series): Chichester, Ellis Horwood Limited, p. 169176.Google Scholar
Schallreuter, R., and Hinz-Schallreuter, I., 2013, Der Öjlemyrflint (Ordoviz)—eine Mikrofossillagerstätte: Geschiebekunde Aktuell, v. 24, p. 6980.Google Scholar
Sewell, M.A., and McEuen, F.S., 2002, Phylum Echinodermata: Holothuroidea, in Young, C.M., ed., Atlas of Marine Invertebrate Larvae: San Diego, Academic Press, p. 513530.Google Scholar
Sieverts-Doreck, H., 1958, Spezielle Arbeitsgebiete der Mikropaläontologie 3. Echinodermen, in Freund, H., ed., Handbuch der Mikroskopie in der Technik. Volume II: Part 3. Mikroskopie in der Geologie Sedimentärer Lagerstätten (Mikropaläontologie): Frankfurt am Main, Umschau-Verlag, p. 238264.Google Scholar
Smiley, S., McEuen, F.S., Chafee, C., and Krishnan, S., 1991, Echinodermata: Holothuroidea, in Giese, A.C., Pearse, J.S., and Pearse, V.B., eds., Reproduction of Marine Invertebrates. Volume VI. Echinoderms and Lophophorates: Pacific Grove, The Boxwood Press, p. 663750.Google Scholar
Smith, A.B., 1997, Echinoderm larvae and phylogeny: Annual Review of Ecology and Systematics, v. 28, p. 219241. https://doi.org/10.1146/annurev.ecolsys.28.1.219.CrossRefGoogle Scholar
Sohn, I.G., 1956, The transformation of opaque calcium carbonate to translucent calcium fluoride in fossil Ostracoda: Journal of Paleontology, v. 30, p. 113114.Google Scholar
Solovjev, A.N., 2014, Echinoid skeleton: Paleontological Journal, v. 48, p. 15401551. https://doi.org/10.1134/S0031030114140135.CrossRefGoogle Scholar
Verrill, A.E., 1885, Results of the explorations made by the Steamer “Albatross,” off the northern coast of the United States in 1883: United States Commission of Fish and Fisheries, Report of the Commissioner [for 1883], p. 503699.CrossRefGoogle Scholar
von Hagenow, F., and Borchardt, W., 1850, Versteinerungen aus der Lebbiner Kreide: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 2, p. 289290.Google Scholar
Williamson, D., 2013, The Origins of Larvae: Dordrecht, The Netherlands, Kluwer, 261 p.Google Scholar
Wissing, F.-N., and Herrig, E. [with cooperation of Reich, M.], 1999, Arbeitstechniken der Mikropaläontologie. Eine Einführung: Stuttgart, Enke, 191 p.Google Scholar
Wray, G.A., 1992, The evolution of larval morphology during the post-Paleozoic radiation of echinoids: Paleobiology, v. 18, p. 258287.CrossRefGoogle Scholar
Zamora, S., Lefebvre, B., Álvaro, J.J., Clausen, S., Elicki, O., et al. , 2013, Cambrian echinoderm diversity and palaeobiogeography, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic Biogeography and Palaeogeography: Geological Society of London, Memoir, v. 38, p. 157171. https://doi.org/10.1144/M38.13.Google Scholar
Figure 0

Figure 1. Modern echinoderm larvae. All polarized light micrographs (crossed nicols). (1) Bipinnaria (Asteroidea); larval stage of Asterias rubens (Linnaeus, 1758) (ZMUC TM-F/45)—Strib, Kattegat (collected in 1879). (2) Auricularia (Holothuroidea); giant larva ‘Auricularia nudibranchiata Chun’; larval stage of Protankyra brychia (Verrill) (ZMUC TM-F/36)—Misaki, Sagami Bay (collected in 1899). (3) Fully formed echinopluteus (Echinoidea); larval stage of Heterocentrotus mamillatus (Linnaeus, 1758) (ZMUC TM-F/51)—Hurghada, Red Sea (collected in 1936). (4) Six-armed ophiopluteus (Ophiuroidea) [‘Ophiopluteus mancus Mortensen’]; larval stage of Amphiura filiformis (O.F. Müller, 1776) (ZMUC TM-E/86)—Kristineberg, Gullmarfjord (collected in 1918). (5) Not fully formed ophiopluteus (Ophiuroidea); larval stage of Macrophiothrix propinqua (Lyman, 1861) (ZMUC TM-E/100)—Hurghada, Red Sea (collected in 1936). Note wheel-shaped ossicles of holothuroid auricularia (2) and skeletal rods in plutei (3–5). All specimens from (permanent) microscopic slides mounted with Canada Balsam stored in T. Mortensen collection at ZMUC. Abbreviations in white letters: fr = fenestrated skeletal rods; ufr = unfenestrated skeletal rods; lwo = larval wheel ossicles. Abbreviations in black letters: al = anterolateral rod; b = body rod; da = dorsal arch; e = end rod; pd = posterodorsal rod; pl = posterolateral rod; po = postoral rod; pr = preoral arm; ptr = posterior transverse rod; r = recurrent rod; tr = transverse rod; vtr = ventral transverse rod. Scale bar = 500 μm.

Figure 1

Figure 3. Summary of fossil record of modern echinoderm larvae (Crinoidea, Asteroidea, Ophiuroidea, Echinoidea, Holothuroidea), based on data presented in Table 1. Gray vertical bar in Lower Cretaceous (ca. 110 Ma) highlights first appearance of representatives of Ophiuridae (Ophiurida), Ophiocomidae (Ophiacanthida), Amphiuridae, Ophiactidae, and Ophiotrichidae (latter all Amphilepidida; systematics after O'Hara et al., 2017)—modern ophiuroid families in which ophioplutei occur. Stratigraphic position of first Cretaceous ophiopluteus described herein indicated by (red) asterisk.

Figure 2

Table 1. Fossil larval skeletons of modern echinoderm representatives reported in the scientific literature (in stratigraphic order, revisions included).

Figure 3

Figure 2. Late Cretaceous ophiopluteus in comparison with modern body skeletons. (1–3) Ophiopluteus, gen. and sp. A, right part of body skeleton (SNSB-BSPG 2020 XXXIX 5) from late Turonian chalk of Kępa, Isle of Wolin, NW Poland: (1) inner view; (2) inner oblique view; (3) lateral oblique view. Note small thorns at rods (black arrows). All scanning electron micrographs (specimen covered with coccoliths in part). (4, 5) ‘Ophiopluteus arcifer’ Mortensen, 1921, Recent (linked adult species unknown), compound body skeleton (left part = light gray; right part = dark gray; median processes = white) reported from Gulf of Siam, Strait of Malacca, and off Jolo, Philippines (modified from Mortensen, 1921). Abbreviations: al = anterolateral rod; b = body rod; dm = dorsal median process; dr = dorsal recurrent rod; dtr = dorsal transverse rod; e = end rod; pd = posterodorsal rod; pl = posterolateral rod; po = postoral rod; vm = ventral median process; vr = ventral recurrent rod; vtr = ventral transverse rod.. Scale bars = 50 μm (1–3), and 100 μm (4, 5).