Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-11T06:34:25.891Z Has data issue: false hasContentIssue false

Early Jurassic Trochotomidae (Vetigastropoda, Pleurotomarioidea) from the Neuquén Basin, Argentina

Published online by Cambridge University Press:  04 June 2015

S. Mariel Ferrari
Affiliation:
Museo Paleontológico Egidio Feruglio, Av. Fontana 140, U9100GYO, Trelew, Chubut, Argentina 〈mferrari@mef.org.ar〉 Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, Buenos Aires, Argentina
Susana E. Damborenea
Affiliation:
Departamento Paleontología Invertebrados, Museo de Ciencias Naturales, Univ. Nac. La Plata, Paseo del Bosque s/n, A1900FWA La Plata, Argentina 〈sdambore@fcnym.unlp.edu.ar〉, 〈mmanceni@fcnym.unlp.edu.ar〉; 〈patagonianoyster@gmail.com〉 Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, Buenos Aires, Argentina
Miguel O. Manceñido
Affiliation:
Departamento Paleontología Invertebrados, Museo de Ciencias Naturales, Univ. Nac. La Plata, Paseo del Bosque s/n, A1900FWA La Plata, Argentina 〈sdambore@fcnym.unlp.edu.ar〉, 〈mmanceni@fcnym.unlp.edu.ar〉; 〈patagonianoyster@gmail.com〉 Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, Buenos Aires, Argentina
Miguel Griffin
Affiliation:
Departamento Paleontología Invertebrados, Museo de Ciencias Naturales, Univ. Nac. La Plata, Paseo del Bosque s/n, A1900FWA La Plata, Argentina 〈sdambore@fcnym.unlp.edu.ar〉, 〈mmanceni@fcnym.unlp.edu.ar〉; 〈patagonianoyster@gmail.com〉 Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, Buenos Aires, Argentina

Abstract

Trochotomidae is a small but distinctive extinct family of pleurotomarioidean gastropods characterized by trochiform shells with an elliptical trema. Two new species of trochotomids are described from Pliensbachian deposits in the Neuquén Basin, Argentina. The new genus-group name Placotoma is proposed to replace the pre-occupied name Discotoma Haber non Mulsant. The record of Trochotoma (Trochotoma) protonotialis new species and Trochotoma (Placotoma) neuquensis new species in the early Jurassic of Argentina extends the paleobiogeographical distribution of the genus (and the family) to the Southern Hemisphere. The new taxa reported here represent a component of the pleurotomarioidean adaptive radiation that took place in the Tethyan region during the earliest Jurassic. They are related to local patch coral reefs of shallow, open-marine paleoenvironments, agreeing with the known habitat of most species of this family. The group was well represented in the Tethyan region during the Mesozoic, especially during the Jurassic, and the new species represent its southernmost occurrence.

Type
Articles
Copyright
Copyright © 2015, The Paleontological Society 

Introduction

Pleurotomarioidean gastropods were abundant and diverse in marine Paleozoic and Mesozoic shallow waters, but during the Cenozoic they became rare, and now tend to be limited to deep-water environments (Harasewych, Reference Harasewych2002). The very distinctive late Triassic–Jurassic family Trochotomidae Cox, Reference Cox1960 is included in the superfamily Pleurotomarioidea Swainson, Reference Swainson1840 by most authors (see discussion below), but its phylogenetic affinities are in fact problematic. This group includes trochiform shells with an elongate elliptical trema that have been grouped into the genus-group taxa Trochotoma Eudes-Deslongchamps, Reference Eudes-Deslongchamps1843, Discotoma Haber, Reference Haber1934non Mulsant, Reference Mulsant1850 (here renamed Placotoma), Valfinia Cox, Reference Cox1958, and Legayella Fischer, Reference Fischer1969. Urkutitoma Szabó, Reference Szabó1984 is another taxon tentatively included in the family by Szabó (Reference Szabó2009). Almost 120 species names have been referred to this group, most of them instituted in the nineteenth century, with many figured solely by drawings and only poorly characterized, and a few were never figured (Table 1 and Supplementary Data). The family needs a thorough revision to elucidate its phylogenetic relationships with other vetigastropod groups, such as Scissurelloidea Gray, Reference Gray1847 and Haliotoidea Rafinesque, Reference Rafinesque1815.

Table 1 List of nominal species once referred to Trochotomidae, with an indication of their updated generic affinities. Those discussed in this paper (including supplementary data) are in bold type. Taxa doubtfully related to this family are indicated with question marks.

Early Jurassic marine gastropods from South America were studied by Bayle and Coquand (Reference Bayle and Coquand1851), Behrendsen (Reference Behrendsen1891, Reference Behrendsen1922), Möricke (Reference Möricke1894), Burckhardt (Reference Burckhardt1900, Reference Burckhardt1902), Jaworski (Reference Jaworski1925, Reference Jaworski1926a, Reference Jaworski1926b), Weaver (Reference Weaver1931), Feruglio (Reference Feruglio1934), Wahnish (Reference Wahnish1942), Gründel (Reference Gründel2001), and Damborenea and Ferrari (Reference Damborenea and Ferrari2008). Ferrari (Reference Ferrari2009, Reference Ferrari2011, Reference Ferrari2012, Reference Ferrari2013, Reference Ferrari2014) and Ferrari et al. (2014) recently provided new data on the taxonomic composition of early Jurassic marine gastropod faunas from west-central Patagonia. Ferrari (Reference Ferrari2009) pointed out that some genera are cosmopolitan, being known from the Southern Hemisphere and other regions of the world (i.e., Europe), and are represented by some endemic species in west-central Patagonia and other localities in Argentina and Chile. Ferrari (Reference Ferrari2011, Reference Ferrari2012, Reference Ferrari2013, Reference Ferrari2014) reported 13 gastropod families from the early Jurassic (Pliensbachian–Toarcian) marine deposits of Chubut Province. These include 20 genera, two subgenera, and 36 species. Most of these genera were recorded for the first time in the Argentinean Jurassic, and at least nine new species seem to be endemic to the Patagonian region.

Nevertheless, early Jurassic gastropods from the Neuquén Basin are still poorly known, despite being widely distributed and locally diverse (see synthesis of previous knowledge in Ferrari, Reference Ferrari2009; Riccardi et al., Reference Riccardi, Damborenea, Manceñido and Leanza2011). Their potential use in paleobiogeography and paleoecology awaits updated systematic revisions. At least 15 gastropod species were preliminarily reported from the uppermost lower Pliensbachian beds at Piedra Pintada (southern Neuquén) by Damborenea et al. (Reference Damborenea, Manceñido and Riccardi1975). This paper deals with two of these species from the Piedra Pintada area and nearby localities. The two new species are the first Trochotomidae to be described from the Southern Hemisphere.

Geological setting

The Neuquén Basin is a well-known back-arc basin developed on the eastern margin of the Paleo-Pacific (or Panthalassa) Ocean, which had a rich depositional history spanning most of the Mesozoic. The late Triassic and early Jurassic extensional time (Uliana and Biddle, Reference Uliana and Biddle1988) was followed by the deposition of a thick sedimentary succession in which several sedimentary cycles can be recognized, each with different paleogeographical and temporal extension (Legarreta and Uliana, Reference Legarreta and Uliana1996, Reference Legarreta and Uliana2000). The initial transgression occurred through the Curepto Strait (Vicente, Reference Vicente2005) in southern Mendoza Province, and the first filling was accommodated in pre-existing rift depocenters. During Pliensbachian times, the transgression spread and became generalized, attaining the first of the two largest marine floodings of the basin: the Pliensbachian–Toarcian and the Tithonian–Neocomian (see Gulisano and Gutiérrez-Pleimling, Reference Gulisano and Gutiérrez-Pleimling1995; Arregui et al., Reference Arregui, Carbone and Martínez2011).

The material studied here was found in localities near the southern end of the embayment (Fig. 1) in sublittoral deposits of Pliensbachian age. Most specimens were recorded from the classical Piedra Pintada fossil locality discovered near the end of the nineteenth century by an expedition organized by the Museo de La Plata (Roth, Reference Roth1899). In this particular area, a variety of marginal marine and littoral environments developed (Gulisano and Pando, Reference Gulisano and Pando1981) within the Cuyo Mesosequence (Legarreta and Gulisano, Reference Legarreta and Gulisano1989), which represents the first Mesozoic marine sedimentation in this part of the basin. In the Piedra del Águila–Carrán Curá region, the volcanic influence was quite persistent. Several lithofacies were recognized by Gulisano and Pando (Reference Gulisano and Pando1981, p. 561); the gastropods described here are associated with what they called “light colored sandstones, mudstones and tuffs facies.” These sediments were deposited in a moderate- to high-energy shoreface to foreshore environment, with frequent pyroclastic input, referred by Gulisano and Pando (Reference Gulisano and Pando1981) to the Lajas Formation (Weaver, Reference Weaver1931). Other authors (see Arregui et al., Reference Arregui, Carbone and Martínez2011) use the local name Piedra Pintada Formation (Stipanicic et al., Reference Stipanicic, Rodrigo, Baulies and Martínez1968) for these deposits. The marine sediments overlie Lower Jurassic volcanic and pyroclastic rocks (Sañicó Formation).

Figure 1 Location map and simplified logged sections at Santa Isabel (A), Carrán Curá (B) and Cerro Roth (C) in southern Neuquén Province, Argentina. Beds with Trochotoma indicated with an arrow. Paleogeography after Legarreta and Uliana (Reference Legarreta and Uliana2000), sections adapted from Damborenea et al. (Reference Damborenea, Manceñido and Riccardi1975) and Damborenea (Reference Damborenea1987).

Damborenea et al. (Reference Damborenea, Manceñido and Riccardi1975) distinguished two main biofacies and seven sub-biofacies in these deposits. The beds bearing the gastropods described here belong to their sub-biofacies A2, characterized by high-diversity systematic and ecological assemblages, dominated by an epifauna with a large percentage of cemented organisms. This sub-biofacies includes coral buildups, which locally form small bioherms. It is associated with the ‘light coloured sandstones, mudstones and tuffs’ lithofacies already mentioned.

Zonal successions spanning the Pliensbachian–Tithonian interval were recognized on the basis of abundant, diverse, and stratigraphically significant cephalopod, bivalve, and brachiopod taxa, which are correlated with the international standard scale (see Riccardi et al., Reference Riccardi, Damborenea, Manceñido and Leanza2011), and are used as the time frame for this study.

Materials and methods

Specimens were collected at three localities (Cerro Roth, Carrán Curá, and Estancia Santa Isabel, Fig. 1), all in southern Neuquén Province. The stratigraphic sections logged there were described by Damborenea et al. (Reference Damborenea, Manceñido and Riccardi1975, fig. 3) and Damborenea (Reference Damborenea1987, fig. 5). The accompanying fauna is both abundant and highly diverse, comprising mostly epifaunal bivalves, brachiopods, other gastropods, and corals. The material from Piedra Pintada was found in uppermost lower Pliensbachian beds (Austromorphites behrendseni Zone), according to the local ammonite biozonation (Riccardi, Reference Riccardi2008a, Reference Riccardi2008b; Riccardi et al., Reference Riccardi, Damborenea, Manceñido and Leanza2011). At Estancia Santa Isabel, ammonites indicate a slightly younger age (Fanninoceras fannini or F. disciforme Zones), i.e., lower upper Pliensbachian.

The material is housed in the collections of the División Paleozoología Invertebrados, Museo de Ciencias Naturales de La Plata (MLP), and Museo Carmen Funes, Plaza Huincul (MCF-PIPH). Newly collected shells were prepared by technical staff at the Museo Paleontológico “Egidio Feruglio” (MPEF) laboratory. All specimens were coated with ammonium chloride to enhance sculptural details for photography.

Systematic paleontology

Institutional abbreviations

MLP: Museo de Ciencias Naturales la Plata, La Plata, Argentina; MCF-PIPH: Museo Carmen Funes, Plaza Huincul, Neuquén, Argentina; MPEF: Museo Paleontológico “Egidio Feruglio”, Trelew, Chubut, Argentina.

Superfamily Pleurotomarioidea Swainson, Reference Swainson1840

Family Trochotomidae Cox, Reference Cox1960

Remarks

Although Ditremariinae Haber, Reference Haber1934 (p. 320), available under ICZN Art. 13.2.1 (Bouchet and Rocroi, Reference Bouchet and Rocroi2005, p. 66, 176) would hold priority as a family group name (still used by Wang, Reference Wang1978, p. 399), Trochotomidae Cox (in Knight et al., Reference Knight, Cox, Keen, Smith, Batten, Yochelson, Ludbrook, Robertson, Yonge and Moore1960, p. 220) is to be maintained because it was proposed before 1961 and has gained prevailing usage (ICZN Art. 40.2).

Trochotomids are frequently related to reef environments of the Tethyan region (Europe, northern Africa). Outside of this region they were only mentioned from northern Russia by Kiparisova (Reference Kiparisova1952), and from western Argentina by Damborenea et al. (Reference Damborenea, Manceñido and Riccardi1975, Reference Damborenea, Ferrari, Manceñido and Griffin2012b). This last record is in fact a preliminary identification of nearly all the material described below. Except for such records, the family was unknown either from the rest of the Americas or other Austral regions.

Genus Trochotoma Eudes-Deslongchamps, Reference Eudes-Deslongchamps1843

Type species

Trochotoma conuloides Eudes-Deslongchamps, Reference Eudes-Deslongchamps1843, p. 109, pl. 8, figs. 16–19, from the Bathonian of France, subsequent designation by Woodward, Reference Woodward1851, p. 148, pl. 10, fig. 26.

Remarks

Woodward (Reference Woodward1851, p. 148) already regarded Trochotoma Eudes-Deslongchamps, Reference Eudes-Deslongchamps1843 and Ditremaria d’Orbigny, Reference d’Orbigny1843 as subjective synonyms, and used the first name as valid. The reasons for preferring the generic name Trochotoma over Ditremaria were also explained by Pictet (Reference Pictet1855, p. 179), Hermite (Reference Hermite1877, p. 688), and Fischer and Weber (Reference Fischer and Weber1997, p. 151). Despite this, some authors used Ditremaria as the valid genus name (i.e., Rollier, Reference Rollier1918; Haber, Reference Haber1934; Dubar, Reference Dubar1948). A few other authors did not regard them as synonyms, and notably, Eudes-Deslongchamps (Reference Eudes-Deslongchamps1868, p. 215) restricted Ditremaria to shells with two closely set tremata and Trochotoma to shells with a single trema (see also Stoliczka, Reference Stoliczka1867, p. 384; von Zittel, 1873, p. 341; and Burckhardt, Reference Burckhardt1897, p. 203).

The genus had a Mesozoic stratigraphic distribution, and greatly diversified very early in Jurassic times. Middle and late Triassic records, mostly from China (Yu et al., Reference Yu, Pan and Wang1974; Pan, Reference Pan1977, Reference Pan1982; Tong and Erwin, Reference Tong and Erwin2001) and Slovakia (Kollárová-Andrusovová and Kochanová, Reference Kollárová-Andrusovová and Kochanová1973), are few and doubtful. Even some Permian species were referred to Trochotoma (Gemmellaro, Reference Gemmellaro1889), but they clearly do not belong to this genus. Similarly, the Miocene species described by Deshayes (Reference Deshayes1865) as Trochotoma terquemi was later referred to the Scissurellidae genus Sukashitrochus Habe and Kosuge, Reference Habe and Kosuge1964 by Lozouet et al. (Reference Lozouet, Lesport and Renard2001). It is now included in Sinezona Finlay, Reference Finlay1926 (Geiger, Reference Geiger2012, p. 593). Likewise, the living species described as Trochotoma crossei de Folin (in de Folin and Périer, Reference Damborenea, Manceñido and Riccardi1869, p. 144, pl. 22, fig. 6) is now regarded as a species of Sinezona. The specific diversity of Trochotoma was high until the latest Jurassic, and there is a single record from Lower Cretaceous deposits (Trochotoma barremica Cossmann, Reference Cossmann1916). These genus names have also been applied to members of Trochotoma: Rimulus d’Orbigny, 1841, p. 199, (nom. nud.), and Ditremaria d’Orbigny, Reference d’Orbigny1843, p. 276.

Subgenus Trochotoma Eudes-Deslongchamps, Reference Eudes-Deslongchamps1843

Trochotoma (Trochotoma) protonotialis new species

Figure 2.1–2.7

Figure 2 (1–7) Trochotoma (Trochotoma) protonotialis n. sp. (1) MLP 26172, holotype, (1a) lateral view; (1b) apical view. (2) MLP 12168, paratype. (2a) lateral view; (2b) apical view; (2c) basal view. (3) MCF-PIPH 554. (3a, b, c) lateral views; (3d) apertural view; (3e, f) basal and umbilical views; (3g) apical view. (4) MCF-PIPH 553, lateral view. (5) MCF-PIPH 684, lateral view. (6) MCF-PIPH 555. (6a) lateral view; (6b, c) lateral and apical views. (7) MLP 12167. (7a, b) lateral views; (7c) apical view. (8, 9) Trochotoma (Placotoma) neuquensis n. sp. (8) MLP 26171, holotype. (8a) lateral view; (8b) apical view. (9) MLP 26173, paratype. (9a) lateral view; (9b) apical view. Scale bar represents 5 mm.

Type material

Holotype MLP 26172; complete teleoconch; paratypes MLP 12168, 26169, two specimens.

Diagnosis

Shell turbiniform, gradate, broadly pseudomphalous; teleoconch with 5 whorls; ramp and outer face slightly concave; suture visible in a narrow furrow; spiral elements on the shell surface predominant; three to four cords between two peripheral angulations on mature whorls; elliptical trema on the adapical angulation; peristome prosocline and discontinuous in mature growth stages, but with deep notch in juvenile growth stages; base flat to slightly excavated, with spiral threads intercepted by fine prosocline growth lines.

Type locality and horizon

Estancia Santa Isabel, Neuquén Province, Argentina. Early Jurassic (lower upper Pliensbachian, Fanninoceras fannini or F. disciforme Zones), Piedra Pintada Formation.

Description

Dextral, turbiniform, gradate, broadly pseudomphalous shell. Protoconch not preserved. Teleoconch consisting of five whorls. Juvenile whorls slightly convex, with narrow, flat subsutural ramp. Sutural ramp abaxially delimited by rounded angulation. Outer face of juvenile whorls also flat. Ramp and outer face slightly concave on mature teleoconch. Width of ramp gradually increasing with growth. Angulation sharp on penultimate whorl; surface well rounded between the adapertural end of trema and outer lip. Suture visible in very narrow but distinct furrow. Ornament consisting of clearly visible spiral elements; three to four spiral cords developed on outer face between two peripheral angulations. Elongate elliptical trema situated on adapical angulation a short distance behind aperture. Adapical angulation not continuing beyond trema; shell surface consequently changing abruptly from sharply angular to gently convex between trema and peristome. Adult peristome prosocline, discontinuous. Juvenile peristome with deep notch, reflected on shell as selenizone on adapical angulation. Base flat to slightly convex, widely excavated, with broad, funnel-shaped false umbilicus. Spiral threads intercepted by fine prosocline growth lines on base. Figure 3 is a diagram of the variations of height and width of T. protonotialis n. sp. See Table 2 for measurements.

Figure 3 Diagram showing the variations of height/width ratio in Trochotoma protonotialis n. sp. Note that R2 indicates a good correlation between these parameters.

Table 2 Measurements of Trochotoma (T.) protonotialis n. sp.

Etymology

Latinized adjective derived from Greek protos=first and notios=southern, referring to the first Southern Hemisphere occurrence of the genus, in the Jurassic of South America.

Additional material

Eight almost complete specimens and one internal mold (MLP 12166, 12167, 26170; MCF-PIPH 553, 554, 555, 564, 684) from uppermost lower Pliensbachian (Austromorphites behrendseni Zone) to lower upper Pliensbachian (Fanninoceras fannini or F. disciforme Zones) in the Piedra Pintada area (Cerro Roth, Carrán Curá, and Estancia Santa Isabel), southern Neuquén. All material collected by the authors during several field trips since 1973, as mentioned by Damborenea et al. (1975, table I, #53).

Remarks

The type species, Trochotoma conuloides Eudes-Deslongchamps (Reference Eudes-Deslongchamps1843, p. 109, pl. 8, figs. 16–19; d’Orbigny, Reference d’Orbigny1853, p. 385–386, pl. 341, figs. 14–17; Hermite Reference Hermite1877, pl. 14, figs. 4–5; Cossmann, Reference Cossmann1885, pl. 10, figs. 38–39), from the Bathonian of France, can be compared to the Argentinean species; the European form has a more elongate spire, more convex-to-flat teleoconch whorls, finer spiral cords on the shell surface, and an oblique trema. Trochotoma acuminata Eudes-Deslongchamps (Reference Eudes-Deslongchamps1843, p. 108, figs. 11–15; d’Orbigny Reference d’Orbigny1853, p. 384–385, pl. 341, figs. 8–13), from the Bathonian of France, and T. lycetti Hermite (Reference Hermite1877, p. 693; Morris and Lycett Reference Morris and Lycett1851, pl. 10, figs. 16, 20, as T. conuloides and T. acuminata respectively), from the Bathonian of Great Britain, differ from T. protonotialis n. sp. in having trochiform shells with flattened whorls and a poorly developed sutural ramp, finer spiral cords, better developed collabral elements, and opisthocyrt lunulae.

Trochotoma calix (Phillips, Reference Phillips1829, pl. 11, fig. 30; Hudleston, Reference Hudleston1885, pl. 4, figs. 6a–b; Reference Hudleston1896, p. 445, pl. 41, figs. 6–7), from the Middle Jurassic of England, is also similar to the new species; however, it has a single spiral keel and a more depressed aperture. Trochotoma affinis Eudes-Deslongchamps (Reference Eudes-Deslongchamps1843, p. 106, pl. 8, figs. 8–10; Eudes-Deslongchamps, Reference Eudes-Deslongchamps1868, pl. 8, figs. 6a–b; d’Orbigny, Reference d’Orbigny1853, p. 381–383, pl. 341, figs. 1–3; Hudleston Reference Hudleston1896, p. 447, pl. 41, fig. 4; including T. carinata Lycett Reference Lycett1850, p. 417; 1857, pl. 4, fig. 5), from the Middle Jurassic of the European area, differs from the Argentinean species in having a slightly more concave outer face. Close affinities of T. (T.) protonotialis n. sp. can be seen with Trochotoma gradus Eudes-Deslongchamps (Reference Eudes-Deslongchamps1843, pl. 8, figs. 4–7; Eudes-Deslongchamps, Reference Eudes-Deslongchamps1868, pl. 4, figs. 2a–b; d’Orbigny, Reference d’Orbigny1843, p. 276, not figured, as Ditremaria bicarinata; Fischer and Weber, Reference Fischer and Weber1997; p.150, pl. 24, figs. 5a–c), from the Early Jurassic of France. However, d’Orbigny’s species is larger, has nine spiral cords on the spire whorls, the whorl side is almost vertical, and the elliptical trema is widely open. The Argentinean material has only five spiral cords per whorl and the whorl side is slightly inclined. The trema in Trochotoma (T.) protonotialis n. sp. seems to be slightly more elongate and located on a low but clearly distinct funnel-like elevation of the shell. This elevation appears to be far more reduced or missing in d’Orbigny’s and Fischer and Weber’s figures. The aperture is only partially visible in our material, but it appears to be somewhat more tangential.

The late Jurassic species most similar to the one described here is Trochotoma rathieriana (d’Orbigny, Reference d’Orbigny1850b, p. 9; Reference d’Orbigny1853, pl. 342, figs. 6–8, pl. 343, figs. 1–2), from the Oxfordian of France; but T. rathieriana has a teleoconch with more numerous whorls. Another European Bathonian species similar to T. (T.) protonotialis n. sp. is Trochotoma obtusa Morris and Lycett (Reference Morris and Lycett1851, p. 83, pl. 10, figs. 15a–b; Fischer Reference Fischer1969, pl. 14, figs. 20–21a–c), from the Middle Jurassic of England and France; however, T. obtusa differs from T. (T.) protonotialis n. sp. in having more convex whorls, a less conical shell, and a more elliptical trema. Trochotoma tabulata Morris and Lycett (Reference Morris and Lycett1851, p. 83, pl. 10, figs. 17–17a; Cossmann, Reference Cossmann1885, pl. 8, figs. 13–14), from the Middle Jurassic (Bathonian) of England, has a narrower apex than in T. protonotialis n. sp., and the side of the whorls is nearly flat instead of concave. Trochotoma magnifica Cossmann (Reference Cossmann1885, pl. 8, figs. 15–17; 1900, pl. 14, figs. 10–11), from the Bathonian of Europe, differs from the Argentinean form in having more teleoconch whorls (seven to eight), a more elongate trema, a concave selenizone, and better-developed collabral elements on the ramp of the whorls and on the base.

Trochotoma extensa Morris and Lycett (Reference Morris and Lycett1851, p. 83, pl. 10, figs. 19a–b; Fischer Reference Fischer1969, pl. 14, figs. 19a–b), from the Middle Jurassic (Bathonian) of England and France, differs from T. (T.) protonotialis n. sp. in having flattened whorls and weaker spiral ornament.

The general shell morphology of the Argentinean Jurassic species is even superficially similar to some extant Scissurellidae, with the most obvious difference being size. Sinezona singeri Geiger (Reference Geiger2006, p. 19, figs. 14–16), from the western Indian Ocean, is much smaller than T. (T.) protonotialis n. sp., and it has an adult teleoconch with 23–26 fine axial ribs, a convex outer face, and a convex base with a strong constriction below the selenizone. Sukashitrochus morleti (Crosse, Reference Crosse1880), from New Caledonia to central Pacific, has more developed prosocline axial ribs on the shell surface, a stronger adapical keel on the outer face, and a more convex base (Geiger, Reference Geiger2006, p. 23, fig. 17). Figure 5 shows illustrations of some species comparable to T. (T.) protonotialis n. sp.

Subgenus Placotoma (=Discotoma Haber, Reference Haber1934non Mulsant, Reference Mulsant1850) new subgenus

Type species

Ditremaria amata d’Orbigny, Reference d’Orbigny1850b, p. 9, from the Callovian of France, by original designation (Haber Reference Haber1934, p. 366).

Diagnosis

Same as the diagnosis provided for the preoccupied name “Discotoma” in Haber (Reference Haber1934, p. 368).

Etymology

Derived from the Greek plakos=plate, and tome = a cutting, referring to the strongly depressed shell with trema.

Remarks

Haber (Reference Haber1934, p. 368) proposed Discotoma as a subgenus of Ditremaria. Depressed trochotomid shells have been widely referred to this taxon, which may be retained at subgeneric level. However, the name Discotoma was already in use for a coleopteran genus (Mulsant, Reference Mulsant1850, p. 215), a fact overlooked by previous authors, and thus it cannot be used for this gastropod taxon. We propose here the name Placotoma to replace the pre-occupied name Discotoma Haber non Mulsant.

Trochotoma (Placotoma) neuquensis new species

Figure 2.8, 2.9

Type material

Holotype: one almost complete shell (MLP 26171) from uppermost Lower Pliensbachian beds at Cerro Roth, Piedra Pintada, Neuquén Province. Paratype: a slightly deformed shell (MLP 26173) from the same locality and level.

Diagnosis

Shell trochiform, gradate, depressed; teleoconch with four convex whorls; suture slightly impressed; whorls strongly angular at midwhorl; last whorls delimited by an irregular peripheral swollen belt; trema elongate, elliptical on midwhorl angulation; peristome prosocline, discontinuous; base flat to slightly convex, with eight regularly spaced spiral cords.

Type locality and horizon

Cerro Roth, Neuquén Province, Argentina; lower Pliensbachian (Austromorphites behrendseni Zone), Piedra Pintada Formation.

Description

Trochiform, gradate and depressed shell, with mean height of 11.50 mm and mean width of 23.47 mm. Protoconch not preserved. Fragmentary teleoconch comprising four convex whorls. Suture slightly impressed in narrow spiral furrow. Upper portion of whorls forming flat, almost horizontal ramp. Ramp smooth, rendering shell outline strongly gradate. Outer face slightly concave to flat, ornamented with three spiral cords. Periphery of last whorl subangular, with irregular, keel-like swollen belt. Elongate elliptical trema present on adapical angulation very near aperture. Angulation bearing selenizone terminating at trema. Base convex, ornamented with eight regularly spaced spiral cords. Peristome strongly prosocline, discontinuous. Dimensions: MLP 26171 (holotype), height: 11.0, width: 23.6; MLP 26173 (paratype), height: 12.03, width: 23.34.

Etymology

Refers to the occurrence in Neuquén Province, Argentina.

Remarks

The most similar species to the one described here is Trochotoma (Placotoma) cossmanni (Rollier, Reference Rollier1918, p. 59; figured by Cossmann, Reference Cossmann1900, pl. 16, figs. 3–5 as Trochotoma imbricata; Bigot, Reference Bigot1935, pl. 39, fig. 4 as Trochotoma petrariae; Fischer, Reference Fischer1953, pl. 1, figs. 1-2; Reference Fischer1964, pl. 2, figs. 10–11), from the Bathonian of France, but this apparently lacks spiral threads on the base. T. cossmanni is one of the few species illustrated with good photographs (Cossmann, Reference Cossmann1900; Fischer, Reference Fischer1964). Fischer (Reference Fischer1969, p. 125) considered Trochotoma petrariae Bigot to be a junior synonym of T. cossmanni.

Trochotoma funiculosa Cossmann (Reference Cossmann1885, pl. 10, figs. 36–37; Fischer, Reference Fischer1969, pl. 14, figs. 22a–c), also from the Bathonian of Europe, has a wider and slightly convex upper portion of the whorls, with more prominent spiral threads, and a nearly vertical outer face of the whorls. The specimens described and figured by Morris and Lycett (Reference Morris and Lycett1851, pl. 10, figs. 10a–c) as Trochotoma discoidea Roemer, Reference Roemer1836, which have been referred either to T. cossmanni (Rollier, Reference Rollier1918) or to T. funiculosa Cossmann (Reference Cossmann1885), have no trema or exhalant outlet on the shell; however, these specimens were included by those authors in Trochotoma because their general shell morphology agree with that of species referred to this genus.

The type species of Placotoma, Trochotoma amata d’Orbigny (Reference d’Orbigny1850b, p. 9; Reference d’Orbigny1853, p. 389, pl. 343, figs. 3–8; de Loriol, Reference de Loriol1890, pl. 18, figs. 3–4; Knight et al., Reference Knight, Cox, Keen, Smith, Batten, Yochelson, Ludbrook, Robertson, Yonge and Moore1960, figs. 135.2a–b) from the late Jurassic of France, can also be compared to T. (P.) neuquensis n. sp. The European species, however, is more depressed than the Argentinean one, and has a more prominent marked spiral ornament and prosocline threads on the ramp. Trochotoma? discoidea Buvignier (Reference Buvignier1852, pl. 25, figs. 10–11), from the Bathonian of Europe, has fewer whorls (three) and a more depressed, lower shell than the Argentinean species. The shell of the European species is also more discoidal and widely umbilicate, and the spiral cords are crossed by very fine, oblique striae.

Trochotoma (Discotoma) gansuensis Tong and Erwin (Reference Tong and Erwin2001, p. 15, pl. 2, figs. 5–10), from the Triassic of China, differs from Trochotoma (P.) neuquensis n. sp. in having more convex whorls, with the last teleoconch whorl more expanded than the spire whorls, ornament consisting of spiral threads and collabral lines, and a row of elongate opisthocline nodes on the ramp. Such characters are missing in T. (P.) neuquensis n. sp. Most probably the species described by Tong and Erwin (Reference Tong and Erwin2001) does not belong to Trochotoma, considering that it has very convex whorls and lacks the elliptical trema. Trochotoma? gansuensis seems to be more similar to other pleurotomarid forms, such as the representatives of Ptychomphalidae Wenz, Reference Wenz1938.

Finally, Trochotoma (P.) neuquensis n. sp. differs from T. (T.) protonotialis n. sp. in having a more depressed shell, a more convex base with better-developed spiral cords and in lacking prosocline collabral growth lines.

Systematic affinities

Trochotomids are currently included in the Pleurotomarioidea, but in the past they were alternatively referred to Eotomarioidea Wenz, Reference Wenz1938 and Haliotoidea Rafinesque, Reference Rafinesque1815 (Hudleston, Reference Hudleston1881; Tong and Erwin, Reference Tong and Erwin2001). The family Pleurotomariidae Swainson is the only family of Pleurotomarioidea to survive beyond the Jurassic into the Recent fauna. Pleurotomarioideans were abundant and diverse components of shallow-water marine faunas throughout the Paleozoic and Mesozoic, while most living Pleurotomariidae are restricted to depths ranging from 100–1000 m (Harasewych, Reference Harasewych2002).

According to Harasewych (Reference Harasewych2002), the majority of contemporary classifications follows Knight et al. (Reference Knight, Cox, Keen, Smith, Batten, Yochelson, Ludbrook, Robertson, Yonge and Moore1960), and defines Pleurotomarioidea as containing 20 extinct families (one of which is the family Trochotomidae), and considers the Pleurotomariidae, Scissurellidae, and Haliotidae as the living members of the superfamily. The inclusion of Haliotidae and Scissurellidae within the Pleurotomarioidea was based on the presence of a slit or series of tremata, and vestiges of bilateral symmetry in the mantle cavity. These families appear in the fossil record during the late Mesozoic. Haszprunar (Reference Haszprunar1989) pointed out that the anatomy of the Paleozoic and Mesozoic families usually included into Pleurotomarioidea might have been more similar to that of living Scisurellidae than to the anatomy of Pleurotomariidae. He suggested that the extinct families previously included in Pleurotomarioidea might be more appropriately assigned to Scisurelloidea. The family Trochotomidae, as defined by Knight et al. (Reference Knight, Cox, Keen, Smith, Batten, Yochelson, Ludbrook, Robertson, Yonge and Moore1960), is an extinct member of Pleurotomarioidea. However, trochotomid species share some anatomical and functional features, such as the trema or foramen for the exhalant water current, characteristic of some extant Scisurellidae. On the other hand, species of Haliotidae have a row of siphonal holes a short distance away from the edge of the shell. Living members of the Haliotidae are grazers on marine algae and live on exposed shores at low-tide level. In contrast, extant members of Scisurellidae and Pleurotomariidae are more commonly found from intertidal to abyssal depths, even though fossil members of Pleurotomariidae were diverse and abundant in shallow marine environments until the Late Cretaceous.

Probably, the development of a trema or row of tremata for an excretory function that is present in different gastropod clades (Bellerophontidae, Haliotidae, Fissurelloidea, Trochotomidae) evolved independently during the Paleozoic and Mesozoic and, as suggested by Szabó (Reference Szabó1984), it was the result of an adaptation to strongly agitated waters.

Paleoecology

Szabó (Reference Szabó1984) regarded the development of a trema, rather than an open selenizone, as an adaptation to strongly agitated waters because an uninterrupted peristome is more resistant to mechanical damage; thus trochotomids were common in reefs whereas other pleurotomarioids were rare or absent in that environment.

The deep slit of most pleurotomarioids is also expected to affect negatively the resistance of the gastropod shell to breakage by predation (Lindström and Peel, Reference Lindström and Peel2010). The proportion of specimens with repaired shell injuries is high in both fossil (Lindström and Peel, Reference Lindström and Peel2010) and living (Harasewych, Reference Harasewych2002) slit-bearing pleurotomarioids. A continuous peristome is more resistant to predator attacks, especially crustacean peeling, which is a very common shell injury in slit-bearing living pleurotomariids in comparison to sympatric trochids with a continuous aperture (see examples and discussion in Harasewych, Reference Harasewych2002, figs. 13–15).

The distribution of most Jurassic trochotomid species shows a high environmental dependency, being associated with coral reefs in the shallow Tethys (Dubar, Reference Dubar1948; Bertling and Insalaco, Reference Bertling and Insalaco1998). The Argentinean trochotomid specimens are found in tuffs and sandstones, and are associated with epifaunal bivalves, ammonites, brachiopods, echinoderms, and coral patch reefs at one of the localities (Cerro Roth, Piedra Pintada). They are also restricted to litho- and biofacies that include coral biostromes or small bioherms (Damborenea et al., Reference Damborenea, Manceñido and Riccardi1975).

Paleobiogeography

Cretaceous and Cenozoic gastropods have proven to be very useful from a paleobiogeographical point of view, but the Jurassic gastropod fauna is still very unevenly known, especially in the Southern Hemisphere. Thus, any new addition to the faunas of poorly known regions, such as South America, provides new and interesting material for paleobioegeographical analyses.

The extinct genus Trochotoma is well represented in the Tethyan region. It has been found commonly in the Mesozoic of Europe, ranging from the early to late Jurassic, and has also been recovered from the early Jurassic of Russia and northern Africa (Table 1). The oldest (although doubtful; see above) occurrence of Trochotoma is dated from the Middle Triassic of China (Tong and Erwin, Reference Tong and Erwin2001). In the present research, we provide the southernmost record of this particular vetigastropod group from the early Jurassic (Pliensbachian) of Neuquén basin, Argentina (Fig. 4).

Figure 4 Paleobioegeographical distribution of Trochotoma s.l. species. Base map depicting early Jurassic paleogeography compiled from various sources.

Monari et al. (Reference Monari, Valentini and Conti2011) discussed the distribution in time and space of two species from Europe, Trochotoma vetusta Terquem, Reference Terquem1855 and T. clypeus Terquem, Reference Terquem1855. Monari et al. (Reference Monari, Valentini and Conti2011) pointed out that the evolutionary history of Trochotoma was characterized by a Sinemurian major adaptive radiation that involved the European epicontinental shelf and the marginal and intra-Tethyan carbonate platforms. They argued that the occurrence of a number of Trochotoma species in Hettangian sediments demonstrates that the diversification of these pleurotomarioidean taxa began very early in the Jurassic.

The occurrence of Trochotoma in the Pliensbachian deposits of Neuquén Basin certainly testifies to paleobiogeographical connections with the Western Tethys at that time, and possibly provides evidence of the faunal radiation that occurred during the early Jurassic.

The new species reported here are endemic to the Argentinean Jurassic and represent the southernmost occurrence of the genus Trochotoma (Fig. 4) and also of the family Trochotomidae. Particularly, the subgenus Trochotoma (Placotoma) was known previously from the Triassic of China (?) and the Jurassic of Europe. The presence of Trochotoma (Placotoma) neuquensis n. sp. in the Pliensbachian marine deposits of Argentina extends the paleobiogeographical distribution of the subgenus into the Mesozoic of South America, showing a new early Jurassic record of this group in the Southern Hemisphere.

Ferrari (Reference Ferrari2011, Reference Ferrari2014) suggested that the Jurassic distribution patterns of some Patagonian marine gastropods might be clarified taking into consideration the dispersal routes of the shallow marine bivalve faunas during the early Jurassic. This supports the idea of a shallow marine connection between the western Tethys and the eastern Pacific as early as Pliensbachian times, related to the Hispanic Corridor (see Damborenea and Manceñido, Reference Damborenea and Manceñido1979; Damborenea et al., Reference Damborenea, Echevarría and Ros2012a, and references therein). The Hispanic Corridor seems to be the most plausible hypothesis to explain the trochotomid faunal exchange between the western Tethys and the Neuquén Basin through the eastern Pacific during the Pliensbachian.

The Argentinean material is associated with coral patch reefs of shallow, open-marine environments within the photic zone, and in this it agrees with the known habitats for other trochotomid species from the western Tethys. Thus, these new data support the statements by Conti and Monari (Reference Conti and Monari1991) and Gatto and Monari (Reference Gatto and Monari2010), who pointed out that the diffusion of suitable environmental conditions played a major control on Tethyan gastropod dispersal and spatial distribution.

Figure 5 Reproduction of original illustrations of some species comparable to T. protonotialis n. sp. (1, 2) Trochotoma (T.) calix (Phillips). (1) from Phillips Reference Phillips1829, pl. 11, fig. 30; (2) from Hudleston Reference Hudleston1885, pl. 4, figs. 6, 6a–b. (3) Trochotoma (T.) magnifica Cossmann, from Cossmann Reference Cossmann1885, pl. 8, figs. 15, 16. (4) Trochotoma (T.) carinata Lycett, from Lycett Reference Lycett1857, pl. 4, fig. 5. (5, 6) Trochotoma (T.) affinis Eudes-Deslongchamps. (5) from Eudes-Deslongchamps Reference Eudes-Deslongchamps1843, pl. 8, fig. 8–10; (6) from Eudes-Deslongchamps Reference Eudes-Deslongchamps1868, pl. 8, fig. 6a, b. (7) Trochotoma (T.) bicarinata (d’Orbigny), from d’Orbigny Reference d’Orbigny1853, pl. 340, fig. 9, 10. (8, 9) Trochotoma (T.) gradus Eudes-Deslongchamps; (8) from Eudes-Deslongchamps Reference Eudes-Deslongchamps1843, pl. 8, fig. 4–7; (9) from Eudes-Deslongchamps Reference Eudes-Deslongchamps1868, pl. 4, figs. 2a, b. (10) Trochotoma (T.) obtusa Morris and Lycett, from Morris and Lycett Reference Morris and Lycett1851, pl. 10, fig. 15b. (11) Trochotoma (T.) rathieriana (d’Orbigny), from d’Orbigny Reference d’Orbigny1853, pl. 342, figs. 7, 8. (12) Trochotoma (T.) tabulata Morris and Lycett, from Morris and Lycett Reference Morris and Lycett1851, pl. 10, fig. 17a. (13) Trochotoma (T.) schlumbergeri Eudes-Deslongchamps, from Eudes-Deslongchamps Reference Eudes-Deslongchamps1868, pl. 8, fig. 5a, b. (14) Trochotoma (T.) orientalis (Kiparisova), from Kiparisova Reference Kiparisova1952, pl. 6, figs. 1a, c Scale bars=5 mm.

Acknowledgments

We are grateful to the Dirección General de Patrimonio Cultural, Secretaría de Estado de Cultura de la Provincia de Neuquén and to L. Zingoni, who allowed access to outcrops in southern Neuquén Province. We are also grateful to R. Coria (Museo Carmen Funes, Plaza Huincul, Neuquén, Argentina) for arranging the loan of the gastropod material collected by the authors, and we thank S. Bessone (Centro Nacional Patagónico, CENPAT, Pto. Madryn) and V. Melemenis (Museo de La Plata, MLP) for their laboratory work. Critical reviews by J. Szabó, R. Gatto, S. Monari, and A. Beu of an earlier version of this manuscript contributed to improvements and are gratefully acknowledged. This study is part of a long-term project financed by CONICET grants, last one PIP 112-200801-01567.

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/10.1017/jpa.2014.28.

References

Ammon, L.V., 1892, Die Gastropodenfauna des Hochfelln-Kalkes und über Gastropoden-Reste aus Ablagerungen von Adnet, Monte Nota und den Raibler Schichten: Geognostische Jahreshefte, v. 5, p. 161221.Google Scholar
Arregui, C., Carbone, O., and Martínez, R., 2011, El Grupo Cuyo (Jurásico Temprano-Medio) en la Cuenca Neuquina, in Leanza, H.A., Arregui, C., Carbone, O., Danieli, J.C., and Vallés, J.M., eds., Geología y Recursos Naturales de la Provincia del Neuquén: Buenos Aires, Relatorio del 18° Congreso Geológico Argentino, p. 7789.Google Scholar
Bayle, E., and Coquand, H., 1851, Mémoire sur les fossiles recueillis dans le Chili par M. Ignace Domeyko et sur les terrains auxquels ils appartiennent: Mémoires de la Societé Géologique de France, ser. 2, v. 4, p. 147.Google Scholar
Behrendsen, O., 1891, Zur Geologie des Ostabhanges der Argentinischen Cordillere, Teil I: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 43, p. 369420.Google Scholar
Behrendsen, O., 1922, Contribución a la geología de la pendiente oriental de la Cordillera Argentina: Actas de la Academia Nacional de Ciencias (Córdoba), v. 7, p. 161227.Google Scholar
Bertling, M., and Insalaco, E., 1998, Late Jurassic coral/microbial reefs from the northern Paris Basin –facies, paleoecology and paleobiogeography: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 139, p. 139175, doi:10.1016/j.palaeo.2005.03.009.CrossRefGoogle Scholar
Bigot, A., 1935, Les récifs Bathoniens de Normandie: Bulletin de la Societé Géologique de France, ser. 5, v. 4, p. 697736.Google Scholar
Blaschke, F., 1911, Zur Tithonfauna von Stramberg in Mähren: Annalen der K.K. Naturhistorischen Hofmuseum, v. 25, p. 143222.Google Scholar
Bouchet, P., and Rocroi, J.P., 2005, Classification and nomenclature of gastropod families: Malacologia, v. 47, p. 1397.Google Scholar
Burckhardt, C., 1897, Zur Systematik und Phylogenie der Pleurotomariiden: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 1897, v. 1, p. 198210.Google Scholar
Burckhardt, C., 1900, Profils géologiques transversaux de la Cordillère Argentino-Chilienne, Stratigraphie et tectonique: Anales del Museo de La Plata, Sección Geología y Mineralogía, v. 2, p. 1136.Google Scholar
Burckhardt, C., 1902, Le Lias de la Piedra Pintada (Neuquén), III, Sur les fossiles marines du Lias de la Piedra Pintada, avec quelques considérations sur l’âge et l’importance du gisement: Revista del Museo de La Plata, v. 10, p. 243249.Google Scholar
Buvignier, N.A., 1852, Description d’une partie des fossiles inédits ou peu connus recueillis dans les terrains du Département de la Meuse, in Statistique Géologique, Minéralogique, Minerallurgique et Paléontologique du Département de la Meuse: Paris, Baillière, p. 152.Google Scholar
Conti, M.A., and Monari, S., 1991, Bivalve and gastropod fauna from the Liassic Ammonitico Rosso facies in the Bilecik Area (western Pontides, Turkey), in Farinacci, A., Ager, D.V., and Nicosia, U., eds., Geology and paleontology of western Pontides, Turkey, Jurassic–Early Cretaceous stratigraphy, tectonics and paleogeographical evolution: Geologica Romana, v. 27, p. 245301.Google Scholar
Cossmann, M., 1885, Contribution à l’étude de la faune de l’étage Bathonien en France (Gastropodes): Mémoires de la Societé Géologique de France, 3eme ser., v. 3, p. 1374.Google Scholar
Cossmann, M., 1900 [1899], Note sur les gastropodes du gisement Bathonien de Saint-Gaultier (Indre): Bulletin de la Societé Géologique de France, 3 ser., v. 27, p. 543585.Google Scholar
Cossmann, M., 1902, Rectifications de nomenclature: Revue Critique de Paléozoologie, v. 6, p. 9698.Google Scholar
Cossmann, M., 1916, Complément à l’étude paléontologique des gisements de Brouzet-les-Alais (Gard): Mémoires de la Societé Géologique de France, Paléontologie v. 21, no. 4, p. 156.Google Scholar
Cotteau, G.H., 1853–1857, Études sur les Mollusques fossiles du département de l’Yonne, Premier Fascicule: Paris, J.B. Baillière et Fils, 441 p.Google Scholar
Cox, L.R., 1958, Three Mesozoic gastropod generic homonyms renamed: Proceedings of the Malacological Society of London, v. 33, p. 7172.Google Scholar
Cox, L.R., 1960, Family Trochotomidae Cox n. fam., in Moore, C., and Pitrat, W., eds., Treatise on Invertebrate Paleontology, Part I, Mollusca 1: Lawrence, Geological Society of America and University of Kansas Press, p. I220I221.Google Scholar
Crosse, H., 1880, Description de mollusques inédits, provenant de la Nouvelle-Calédonie et de la Nouvelle-Bretagne: Journal de Conchyliologie, v. 28, p. 142149.Google Scholar
Damborenea, S.E., 1987, Early Jurassic Bivalvia of Argentina, Part I, stratigraphical introduction and superfamilies Nuculanacea, Arcacea, Mytilacea and Pinnacea: Palaeontographica, Abteilung A, Band A199, Lieferung 1–3, p. 23111.Google Scholar
Damborenea, S.E., and Ferrari, S.M., 2008, El género Lithotrochus Conrad (Gastropoda, Vetigastropoda) en el Jurásico temprano de Argentina: Ameghiniana, v. 45, p. 197209.Google Scholar
Damborenea, S.E., and Manceñido, M.O., 1979, On the palaeogeographical distribution of the pectinid genus Weyla (Bivalvia, Lower Jurassic): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 27, p. 85102, doi: 10.1016/0031-0182(79)90095-6.CrossRefGoogle Scholar
Damborenea, S.E., Manceñido, M.O., and Riccardi, A.C., 1975, Biofacies y estratigrafía del Liásico de Piedra Pintada, Neuquén, Argentina: Actas 1° Congreso Argentino de Paleontología y Bioestratigrafía (Tucumán), v. 2, p. 173228.Google Scholar
Damborenea, S.E., Echevarría, J., and Ros, S., 2012a, Southern Hemisphere Palaeobiogeography of Triassic-Jurassic Marine Bivalves, Springer Briefs in Earth System Sciences: Dordrecht, Springer, 141 p.Google Scholar
Damborenea, S.E., Ferrari, S.M., Manceñido, M.O., and Griffin, M., 2012b, La familia Trochotomidae (Vetigastropoda: Pleurotomarioidea) en el Jurásico temprano de Cuenca Neuquina, Argentina: Ameghiniana Suplemento Resúmenes, v. 49, R141.Google Scholar
Deshayes, G.P., 1865, Note sur le genre Trochotoma et description d’une espèce nouvelle des sables de Bordeaux: Journal de Conchyliologie, v. 13, p. 230239.Google Scholar
Dubar, G., 1948, Études paléontologiques sur le Lias du Maroc. La fauna Domérienne du Djebel Bou-Dahar, près de Béni-Tajjite, Étude suivie de celle de quelques Mollusques d’autres gisements Marocains, Notes et Mémoires: Maroc, Service Géologique, v. 68, p. 1250.Google Scholar
Étallon, A., 1862, Études paléontologiques sur le Haut-Jura. Monographie du Corallien: Mémoires de la Société d’Émulation du Département du Doubs, 3 ème. ser., v. 6, p. 53244.Google Scholar
Étallon, A., 1864, Études paléontologiques sur le Jura Graylois: Mémoires de la Société d’Émulation du Département du Doubs, 3 ème. ser., v. 8, p. 221–506.Google Scholar
Eudes-Deslongchamps, E., 1864, Études sur les étages Jurassiques inférieurs de la Normandie: Thèses Présentés a la Faculté des Sciences de Paris, 296 p.Google Scholar
Eudes-Deslongchamps, E., 1868, Note sur les genres Trochotoma et Ditremaria. Bulletin de la Société Linnéenne de Normandie, 2° sér., v. 1, p. 215221 (for 1866).Google Scholar
Eudes-Deslongchamps, J.-A., 1843, Mémoire sur les Trochotoma, nouveau genre de coquilles fossiles voisin des Pleurotomaires et appartenant, comme eux, aux terrains secondaires: Mémoires de la Société linnéenne de Normandie, v. 7, p. 99110.Google Scholar
Ferrari, S.M., 2009, Cosmopolitan early Jurassic marine gastropods from west-central Patagonia, Argentina: Acta Palaeontologica Polonica, v. 54, p. 449461, doi: 10.4202/app.2008.0070.CrossRefGoogle Scholar
Ferrari, S.M., 2011, Early Jurassic Ataphridae (Mollusca: Gastropoda) from Chubut, Argentina: paleogeographic and paleoecologic implications: Ameghiniana, v. 48, p. 6478.Google Scholar
Ferrari, S.M., 2012, The genera Cryptaulax and Procerithium (Procerithiidae, Caenogastropoda) in the early Jurassic of Patagonia, Argentina: Alcheringa, v. 36, p. 323336.CrossRefGoogle Scholar
Ferrari, S.M., 2013, New early Jurassic gastropods from west-central Patagonia, Argentina: Acta Palaeontologica Polonica, v. 58, p. 579593, doi: 10.4202/app.2011.0090.Google Scholar
Ferrari, S.M., 2014, Patellogastropoda and Vetigastropoda (Mollusca, Gastropoda) from the marine Jurassic of Patagonia, Argentina: Historical Biology, v. 26, p. 563–581. doi: 10.1080/08912963.2013.804518.CrossRefGoogle Scholar
Ferrari, S.M, Kaim, A., and Damborenea, S.E., 2014, The genera Calliotropis Seguenza and Ambercyclus n. gen. (Vetigastropoda, Eucyclidae) from the early Jurassic of Argentina. Journal of Paleontology , v. 88, p. 1174-1188. doi: 10.1666/13–147.CrossRefGoogle Scholar
Feruglio, E., 1934, Fossili Liassici della Valle del Rio Genua (Patagonia): Giornale di Geologia, Annali del R. Museo Geologico di Bologna, v. 9, p. 164.Google Scholar
Finlay, H.J., 1926, A further commentary on New Zealand molluscan systematics: Transactions and Proceedings of the New Zealand Institute, v. 57, p. 320485.Google Scholar
Fischer, J.C., 1953, Note sur les Gastéropodes d’un nouveau gîte coquillier du Bathonien des Ardennes: Journal de Conchyliologie, v. 93, p. 325.Google Scholar
Fischer, J.C., 1964, Contribution a l’étude de la faune Bathonienne dans la Vallée de la Creuse (Indre), brachiopodes et mollusques: Annales de Paléontologie (Invertébrés), v. 50, p. 21101.Google Scholar
Fischer, J.C., 1969, Géologie, paléontologie et paléoécologie du Bathonien au Sud-Ouest du Massif Ardennais: Mémoires du Muséum National d’Histoire Naturelle n.s. Ser. C., Sciences de la Terre, v. 20, p. 1321.Google Scholar
Fischer, J.C., and Weber, C., 1997, Révision critique de la Paléontologie Française d’Alcide d’Orbigny, Volume II, Gastropodes Jurassiques: Paris, Masson éd.; Muséum National d’Histoire Naturelle, 300+272 p.Google Scholar
de Folin, L., and Périer, L., 1867–1871, Les Fonds de la Mer. Étude Internationale sur les Particularités Nouvelles des Régions Sous-marines: Paris, Savy, v. 1, 316 p.Google Scholar
Fraas, O.F., 1882, Geognostische Beschreibung von Württemberg, Baden und Hohenzollern: Stuttgart, E. Schweizerbartsche Verlagshandlung, 217 p.Google Scholar
Gatto, R., and Monari, S., 2010, Pliensbachian gastropods from Venetian Southern Alps (Italy) and their palaeogeographical significance: Palaeontology, v. 53, p. 771802, doi: 10.1111/j.1475-4983.2010.00961.x.CrossRefGoogle Scholar
Geiger, D., 2006, Eight new species of Scissurellidae and Anatomidae (Mollusca: Gastropoda: Vetigastropoda) from around the world, with discussion of two new senior synonyms: Zootaxa, v. 1128, p. 133.CrossRefGoogle Scholar
Geiger, D., 2012, Monograph of the Little Slit Shells. Volume 1. Introduction, Scissurellidae: Santa Barbara, Santa Barbara Museum of Natural History Monographs 7, Studies in Biodiversity 5., 728 p.Google Scholar
Gemmellaro, G.G., 1879, Sui fossili del Calcare cristallino delle Montagne del Casale e di Bellampo, nella provincia di Palermo: Giornale di Scienze Naturali ed Economiche di Palermo, v. 14, p. 157212.Google Scholar
Gemmellaro, G.G., 1889, La Fauna dei Calcari con Fusulina della Valle del Fiume Sosio nella Provincia di Palermo, Fasc 2, Nautiloidea e Gastropoda: Giornale di Scienze Naturali ed Economiche, v. 20, p. 97182.Google Scholar
Gioli, G., 1889, Fossili della Oolite Inferiore di San Vigilio e di Monte Grappa: Atti della Società Toscana di Scienze Naturali, v. 10, p. 119.Google Scholar
Goldfuss, A., 1841–1844, Petrefacta Germaniae, Abbildungen und Beschreibungen der Petrefakten Deutschlands und der angränzenden Länder: Düsseldorf, Arnz & Comp. 692 p.Google Scholar
Gray, J. E., 1847, A list of genera of Recent Mollusca, their synonyma and types: Proceedings of the Zoological Society of London, v. 15, p. 129182.Google Scholar
Gründel, J., 2001, Gastropoden aus dem Jura der südamerikanischen Anden: Paläontologie, Stratigraphie, Fazies 9, Freiberger Forschungshefte, C 492, p. 4384.Google Scholar
Gulisano, C.A., and Gutiérrez-Pleimling, A., 1995, Field guide. The Jurassic of the Neuquén Basin. a) Neuquén Province: Asociación Geológica Argentina, serie E, v. 2, p. 1111.Google Scholar
Gulisano, C.A., and Pando, G.A., 1981, Estratigrafía y facies de los depósitos jurásicos entre Piedra del Águila y Sañicó, Departamento Collón Curá, Provincia de Neuquén: 8° Congreso Geológico Argentino, Actas, v. 3, p. 553577.Google Scholar
Habe, T., and Kosuge, S., 1964, List of the Indo-Pacific Mollusca concerning to the Japanese Fauna, 1 Superfamily Pleurotomarioidea: Tokyo, National Science Museum, 8 p.Google Scholar
Haber, G., 1934, Gastropoda, Amphineura et Scaphopoda Jurassica, II, Pars 65, in Quenstedt, W., ed., Fossilium Catalogus, I, Animalia: Berlin, W. Junk, p. 305400.Google Scholar
Harasewych, M.G., 2002, Pleurotomarioidean gastropods: Advances in Marine Biology, v. 42, p. 237294.CrossRefGoogle ScholarPubMed
Haszprunar, G., 1989, New slit limpets (Scissurellacea and Fissurellacea) from hydrothermal vents, Part 2, Anatomy and relationships: Los Angeles County Museum, Contributions to Science, v. 408, p. 117.Google Scholar
von Hauer, F.R., 1853, Ueber die Gliederung der Trias-, Lias- und Juragebilde in den nordöstlichen Alpen. K. k.: Geologische Reichsanstalt, v. 4, p. 715784.Google Scholar
Henry, J., 1875, l’Infralias dans la Franche-Comté: Mémoires de la Société d’Émulation du Département du Doubs, 4 ème. ser., v. 10, p. 285476.Google Scholar
Hermite, H., 1877, Note sur le genre Trochotoma: Bulletin de la Societé Géologique de France, 3ème serie, v. 5, p. 687698.Google Scholar
Hudleston, W.H., 1881, Contributions to the Palaeontology of the Yorkshire Oolites, Part VII: Geological Magazine, v. 2, p. 119131.CrossRefGoogle Scholar
Hudleston, W.H., 1885, Contributions to the Palaeontology of the Yorkshire Oolites: Geological Magazine, v. 3, p. 151159.CrossRefGoogle Scholar
Hudleston, W.H., 1887–1896, British Jurassic Gasteropoda, Part 1, A Monograph of the Inferior Oolite, Gasteropoda: Monograph Palaeontographical Society of London, 514 p.Google Scholar
Jaworski, E., 1925, Contribución a la paleontología del Jurásico Sudamericano: Publicación de la Dirección General de Minería, Geología e Hidrología, Sección Geológica, v. 4, p. 1160.Google Scholar
Jaworski, E., 1926a, La fauna del Lias y Dogger de la Cordillera Argentina en la parte meridional de la Provincia de Mendoza: Actas de la Academia Nacional de Ciencias (Córdoba), v. 9, p. 137316.Google Scholar
Jaworski, E., 1926b, Beiträge zur Paläontologie und Stratigraphie des Lias, Doggers, Tithons und der Unterkreide in der Kordilleren im Süden der Provinz Mendoza (Argentinien), Teil I, Lias und Dogger: Geologische Rundschau, v. 17a, p. 373427.Google Scholar
Joukowsky, E., and Favre, J., 1913, Monographie géologique et paléontologique du Salève (Haute Savoie, France): Mémoire de la Société de Physique et d’Histoire Naturelle de Genève, v. 37, p. 295523.Google Scholar
Kiparisova, L.D., 1952, New Lower Jurassic fauna from the Amur River Region: Trudy VSEGEI. Moscow Gosgeoltekhizdat, p. 140.Google Scholar
Knight, J.B., Cox, L.R., Keen, A.M., Smith, A.G., Batten, R.L., Yochelson, E.L., Ludbrook, N.H., Robertson, R.Yonge, C.M., and Moore, R.C., 1960, Treatise on Invertebrate Paleontology, Part I, Mollusca 1: Lawrence, Geological Society of America and University of Kansas Press, 351 p.Google Scholar
Koch, F.C.L., 1848, Pleurotomaria solarium, eine neue Schnecke aus den Belemnitenschichten des Lias bei Kahlefeld unfern Nordheim: Palaeontographica, v. 1, p. 174175.Google Scholar
Kollárová-Andrusovová, V., and Kochanová, M., 1973, Molluskenfauna des Bleskový Prameň bei Drnava (Nor. Westkarpaten): Bratislava, Verlag der Slowakischen Akademie der Wissenschaften, 214 p.Google Scholar
Legarreta, L., and Gulisano, C.A., 1989, Análisis estratigráfico-secuencial de la Cuenca Neuquina (Triásico superior-Terciario inferior), in Chebli, G.A., and Spalletti, L.A., eds., Cuencas Sedimentarias Argentinas: Serie Correlación Geológica, v. 6, p. 221–243.Google Scholar
Legarreta, L., and Uliana, M.A., 1996, The Jurassic succession in west-central Argentina: stratal patterns, sequences, and paleogeographic evolution: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 120, p. 303330, doi:10.1016/0031-0182(95)00042-9.CrossRefGoogle Scholar
Legarreta, L., and Uliana, M.A., 2000, El Jurásico y Cretácico de la Cordillera Principal y la Cuenca Neuquina. 1, Facies sedimentarias: Instituto de Geología y Recursos Minerales (Argentina): Anales, v. 29, p. 399432.Google Scholar
Lindström, A., and Peel, J.S., 2010, Shell repair and shell form in Jurassic pleurotomarioid gastropods from England: Bulletin of Geosciences, v. 85, p. 541550, doi: 10.3140/bull.geosci.1205.CrossRefGoogle Scholar
de Loriol, P., 1887, Études sur les mollusques des couches Coralligènes de Valfin (Jura), seconde partie: Mémoires de la Societé Paléontologique Suisse, v. 14, p. 121224.Google Scholar
de Loriol, P., 1890, Études sur les mollusques des couches Coralligènes inférieures du Jura Bernois, deuxième partie: Mémoires de la Societé Paléontologique Suisse, v. 17, p. 82174.Google Scholar
de Loriol, P., 1893, Description des mollusques et brachiopodes des couches séquaniennes de Tonerre (Yonne): Mémoires de la Societé Paléontologique Suisse, v. 20, p. 1174.Google Scholar
Lozouet, P., Lesport, J.-F., and Renard, R. 2001, Révision des Gastropoda (Mollusca) du stratotype de L’Aquitanien (Miocéne inf.), site de Saucats “Lariey”, Gironde, France: Cossmanniana, v. 8, p. 118.Google Scholar
Lycett, J., 1850, Tabular view of fossil shells from the middle divisions of the Inferior Oolite in Gloucestershire: The Annals and Magazine of Natural History (second series), v. 6, p. 401425.Google Scholar
Lycett, J., 1857, The Cotteswold Hills. Hand-book Introductory to their Geology and Palaeontology: London, Piper, Stephenson & Spence, 170 p.Google Scholar
Lycett, J., 1863, Supplementary Monograph on the Mollusca from the Stonesfield Slates, Great Oolite, Forest Marble and Cornbrash: Monograph Palaeontographical Society, 129 p.Google Scholar
Maire, V., 1927, Études géologiques et paléontologiques sur l’arrondissement de Gray. Les Gastropodes du Jurassique supérieur Graylois (fin): Bulletin de la Société Grayloise d’Emulation, v. 19, p. 85–173 (for 1925).Google Scholar
Monari, S., Valentini, M., and Conti, M.A., 2011, Earliest Jurassic patellogastropod, vetigastropod, and neritimorph gastropods from Luxembourg with considerations on the Triassic-Jurassic faunal turnover: Acta Palaeontologica Polonica, v. 56, p. 349384, doi: 10.4202/app.2010.0098.CrossRefGoogle Scholar
Moore, C., 1867, On abnormal conditions of secondary deposits when connected with the Somersetshire and South Wales coal-basins; and on the age of the Sutton and Southerndown series: Quarterly Journal of the Geological Society of London, v. 23, p. 449568.CrossRefGoogle Scholar
Möricke, W., 1894, Versteinerungen des Lias und Unteroolith von Chile: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie B.B., v. 9, p. 1100.Google Scholar
Morris, E.G.S., and Lycett, J., 1851, A monograph of the Mollusca from the Great Oolite, chiefly from Minchinhampton and the Coast of Yorkshire, Part I, Univalves: Monograph of the Palaeontographical Society of London, 130 p.Google Scholar
Mulsant, É., 1850, Species de Coléoptères trimères sécuripalpes: Annales des Sciences Physiques et Naturelles et d’Industrie (Lyon), v. 2, p. 11104.Google Scholar
Nalivkin, W., and Akimov, M., 1917, La faune du Jura de Donetz, III, Gastropoda: Mémoires du Comité Géologique. N. S., v. 136, p. 148.Google Scholar
d’Orbigny, A., 1841–1842, Mollusques, Tome Premier, in de la Sagra, R., ed., Histoire Physique, Politique et Naturelle de l’Ile de Cuba: Paris, Arthus Bertrand, 265 p.Google Scholar
d’Orbigny, A., 1842–1843, Paléontologie Française. Terrains Crétacés, Gastéropodes: Paris, l’auteur & Arthus Bertrand, v. 2, 456 p.Google Scholar
d’Orbigny, A., 1850a, Prodrome de paléontologie stratigraphique universelle des animaux mollusques et rayonées: Paris, Victor Masson, v. 1, 394 p.Google Scholar
d’Orbigny, A., 1850b, Prodrome de paléontologie stratigraphique universelle des animaux mollusques et rayonées: Paris, Victor Masson, v. 2, 428 p.Google Scholar
d’Orbigny, A., 1853, Paléontologie Française. Terrains Jurassiques II, Gastéropodes: Paris, Masson, 622 p.Google Scholar
Pan, H.-Z., 1977, Mesozoic and Cenozoic fossil gastropoda from Yunnan, in Nanjing Institute of Geology and Palaeontology, Academia Sinica, Mesozoic Fossils from Yunnan: Beijing, Science Press, pt. 2, p. 83153.Google Scholar
Pan, H.-Z., 1982, Triassic marine fossil gastropods from SW China: Bulletin of the Nanjing Institute of Geology and Palaeontology, Academia Sinica, v. 4, p. 153188.Google Scholar
Phillips, J., 1829, Illustrations of the Geology of Yorkshire; or, a Description of the Strata and Organic Remains of the Yorkshire Coast: Accompanied by a Geological Map, Sections, and Plates of the Fossil Plants and Animals: York, Thomas Wilson and Sons, 192 p.Google Scholar
Pictet, F.J., 1855, Traité de Paléontologie ou Histoire Naturelle des Animaux Fossiles Considérés dans Leurs Rapports Zoologiques et Géologiques, seconde édition, Tome 3 ème: Paris, J.B. Baillière, 654 p.Google Scholar
Quenstedt, F.A., 1858, Der Jura: Tübingen, Lauppfchen Buchhandlung, 842 p.Google Scholar
Quenstedt, F.A., 1881–1884, Petrefaktenkunde Deutschlands, 1, 7, Die Gasteropoden: Leipzig, Fuess Verlag (R. Reisland), 867 p.Google Scholar
Rafinesque, G.S., 1815, Analyse de la nature ou tableau de l’univers et des corps organizes: Palerme, 223 p.Google Scholar
Remeš, M., 1909, Nachträge zur Fauna von Stramberg. VIII. Über die Gastropoden der Stramberger Schichten: Beiträge zur Paläontologie und Geologie Oesterreich-Ungarns und des Orients, v. 22, p. 177189.Google Scholar
Riccardi, A.C., 2008a, The marine Jurassic of Argentina: a biostratigraphic framework: Episodes, v. 31, p. 326335.CrossRefGoogle Scholar
Riccardi, A.C., 2008b, El Jurásico de Argentina y sus amonites: Revista de la Asociación Geológica Argentina, v. 63, p. 625643.Google Scholar
Riccardi, A.C., Damborenea, S.E., Manceñido, M.O., and Leanza, H.A., 2011, Megainvertebrados del Jurásico y su importancia geobiológica, in Leanza, H.A., Arregui, C., Carbone, O., Danieli, J.C., and Vallés, J.M., eds., Geología y Recursos Naturales de la Provincia del Neuquén: Buenos Aires, Relatorio del 18° Congreso Geológico Argentino, p. 441464.Google Scholar
Roemer, F.A., 1836–1839, Die Versteinerungen des Norddeutschen Oolithen-Gebirges. Mit ein Nachtrag: Hanover, Hahnschen Hofbuchhandlung, 218 p.Google Scholar
Rollier, L., 1918, Fossiles nouveaux ou peu connus des terrains secondaires (Mésozoique) du Jura et des contrées environnantes, Septième fascicule (Tome second, 1re partie): Mémoires de la Societé Paléontologique Suisse, v. 43, p. 171.Google Scholar
Roth, S., 1899, Reconocimiento de la región andina de la República Argentina. Apuntes sobre la geología y la paleontología de los territorios del Rio Negro y Neuquén (diciembre de 1895 a junio de 1896): Revista del Museo de La Plata, v. 9, p. 141196.Google Scholar
Scalia, S., 1903, Sopra alcune nuove specie di fossili del calcare bianco cristallino della montagna del Casale, in Provincia di Palermo (Nota preliminare): Bollettino delle sedute della Accademia Gioenia di Scienze Naturali in Catania, v. 76, p. 3337.Google Scholar
Schlosser, M., 1882, Die Fauna des Kelheimer Diceras-Kalkes. Erste Abtheilung, p. Vertebrata, Crustacea, Cephalopoda und Gastropoda: Palaeontographica, v. 28, p. 41110.Google Scholar
Stipanicic, P.N., Rodrigo, F., Baulies, O.L., and Martínez, C.G., 1968, Las formaciones presenonianas en el denominado Macizo Nordpatagónico y regiones adyacentes: Revista de la Asociación Geológica Argentina, v. 22, p. 6798.Google Scholar
Stoliczka, F., 1861, Über die Gastropoden und Acephalen der Hierlatz-Schichten: Sitzungberichte der Mathematisch-naturwissenschaflichen Classe der k. Akademie der Wissenschaften Wien, v. 43, p. 157204.Google Scholar
Stoliczka, F., 1867–1868, The Gastropoda of the Cretaceous Rocks of southern India: Memoirs of the Geological Survey of India, Palaeontologia Indica, v. 5, p. 1497.Google Scholar
Stoppani, A., 1857, Studii Geologici e Paleontologici sulla Lombardia: Milano, Presso C. Turati, 461 p.Google Scholar
Stoppani, A., 1861, Monographie des fossiles de l’Azzarola appartenant a la zone supérieure des Couches à Avicula contorta en Lombardie, in Stoppani, A., ed., Paléontologie Lombarde ou Description des Fossiles de Lombardie, avec le Concours de Plusieurs Savants, 3° ser.: Milan, Impr. Joseph Bernardoni, p. 33116.Google Scholar
Swainson, W., 1840, A Treatise on Malacology or Shells and Shell-fish: London, Longman, 499 p.Google Scholar
Szabó, J., 1984, Two new archaeogastropod genera from the Tethyan Liassic: Annales Historico-Naturales Musei Nationalis Hungarici, v. 76, p. 6571.Google Scholar
Szabó, J., 2009, Gastropoda of the early Jurassic Hierlatz Limestone Formation; part 1: a revision of type collections from Austrian and Hungarian localities: Fragmenta Palaeontologica Hungarica, v. 26, p. 1108.Google Scholar
Terquem, O., 1855, Paléontologie de l’étage inférieur de la formation Liasique de la province de Luxembourg, Grand-Duché (Hollande), et de Hettange, du département de la Moselle: Mémoire de la Societé Géologique de France, ser. 2, v. 3, p. 219343.Google Scholar
Terquem, O., and Piette, E., 1865, Le Lias inférieur de l’est de la France comprenant la Meurthe, la Moselle, le Grand-Duché du Luxembourg, la Belgique et la Meuse: Mémoires de la Société Géologique de France, 2ème Série, v. 8, p. 1175.Google Scholar
Thurmann, J., and Étallon, A., 1861–1864, Lethea Bruntrutana: ou, Études paléontologiques et stratigraphiques sur le Jura bernois et en particulier les environs de Porrentruy: Neue Denkschriften der allgemeinen Schweizerischen Gesellschaft für die gesammten Naturwissenschaften, v. 18, p. 1145 [1861]; v. 19, p. 147–353 [1862]; v. 20, p. 355–500 [1864].Google Scholar
Tong, J., and Erwin, D.H., 2001, Triassic gastropods of the southern Qinling Mountains, China: Smithsonian Contributions to Paleobiology, v. 92, p. 147.CrossRefGoogle Scholar
Uliana, M.A., and Biddle, K.T., 1988, Mesozoic-Cenozoic paleogeographic and geodynamic evolution of southern South America: American Association of Petroleum Geologists, Memoir, v. 46, p. 599614.Google Scholar
Vicente, J.C., 2005, Dynamic paleogeography of the Jurassic Andean Basin: patterns of transgression and localisation of main straits through the magmatic arc: Revista de la Asociación Geológica Argentina, v. 60, p. 221250.Google Scholar
Wahnish, E., 1942, Observaciones geológicas en el Oeste del Chubut. Estratigrafía y fauna del Liásico en los alrededores del Rio Genua: Boletín, Servicio Geológico Nacional, v. 51, p. 173.Google Scholar
Wang, H., 1978, Gastropoda, in Palaeontological Atlas of Southwest China, Guizhou, Volume 2, Carboniferous-Quaternary: Beijing, Geology Publishing House, p. 394412.Google Scholar
Weaver, C., 1931, Paleontology of the Jurassic and Cretaceous of west central Argentina: Memoir, University of Washington, v. 1, p. 1469.Google Scholar
Wenz, W., 1938–1944, Teil 1: Allgemeiner Teil und Prosobranchia, in Schindewolf, O.H., ed., Handbuch der Paläozoologie, Band 6, Gastropoda: Berlin, Borntraeger, 1639 p.Google Scholar
Woodward, S.P., 1851, A Manual of the Mollusca (Including the Brachiopoda and Tunicata); or a Rudimentary Treatise of Recent and Fossil Shells, Part I, London, John Weale, 158 p.CrossRefGoogle Scholar
Yu, W., Pan, H.Z., and Wang, H.J., 1974, Triassic gastropods, in Nanjing Institute of Geology and Paleontology, Academia Sinica, The Stratigraphical and Paleontological Handbook of Southwestern China: Beijing, Science Press, p. 320326.Google Scholar
von Zieten, C.H., 1830–1833, Die Versteinerungen Württembergs: Stuttgart, Verlag & Lithographie der Expedition des Werkes unsere Zeit, 102 p.Google Scholar
von Zittel, K.A., 1873, Die Gastropoden der Stramberger Schichten: Palaeontographica Supplement II, v. 3, p. 193373.Google Scholar
Figure 0

Table 1 List of nominal species once referred to Trochotomidae, with an indication of their updated generic affinities. Those discussed in this paper (including supplementary data) are in bold type. Taxa doubtfully related to this family are indicated with question marks.

Figure 1

Figure 1 Location map and simplified logged sections at Santa Isabel (A), Carrán Curá (B) and Cerro Roth (C) in southern Neuquén Province, Argentina. Beds with Trochotoma indicated with an arrow. Paleogeography after Legarreta and Uliana (2000), sections adapted from Damborenea et al. (1975) and Damborenea (1987).

Figure 2

Figure 2 (1–7) Trochotoma (Trochotoma) protonotialis n. sp. (1) MLP 26172, holotype, (1a) lateral view; (1b) apical view. (2) MLP 12168, paratype. (2a) lateral view; (2b) apical view; (2c) basal view. (3) MCF-PIPH 554. (3a, b, c) lateral views; (3d) apertural view; (3e, f) basal and umbilical views; (3g) apical view. (4) MCF-PIPH 553, lateral view. (5) MCF-PIPH 684, lateral view. (6) MCF-PIPH 555. (6a) lateral view; (6b, c) lateral and apical views. (7) MLP 12167. (7a, b) lateral views; (7c) apical view. (8, 9) Trochotoma (Placotoma) neuquensis n. sp. (8) MLP 26171, holotype. (8a) lateral view; (8b) apical view. (9) MLP 26173, paratype. (9a) lateral view; (9b) apical view. Scale bar represents 5 mm.

Figure 3

Figure 3 Diagram showing the variations of height/width ratio in Trochotoma protonotialis n. sp. Note that R2 indicates a good correlation between these parameters.

Figure 4

Table 2 Measurements of Trochotoma (T.) protonotialis n. sp.

Figure 5

Figure 4 Paleobioegeographical distribution of Trochotoma s.l. species. Base map depicting early Jurassic paleogeography compiled from various sources.

Figure 6

Figure 5 Reproduction of original illustrations of some species comparable to T. protonotialis n. sp. (1, 2) Trochotoma (T.) calix (Phillips). (1) from Phillips 1829, pl. 11, fig. 30; (2) from Hudleston 1885, pl. 4, figs. 6, 6a–b. (3) Trochotoma (T.) magnifica Cossmann, from Cossmann 1885, pl. 8, figs. 15, 16. (4) Trochotoma (T.) carinata Lycett, from Lycett 1857, pl. 4, fig. 5. (5, 6) Trochotoma (T.) affinis Eudes-Deslongchamps. (5) from Eudes-Deslongchamps 1843, pl. 8, fig. 8–10; (6) from Eudes-Deslongchamps 1868, pl. 8, fig. 6a, b. (7) Trochotoma (T.) bicarinata (d’Orbigny), from d’Orbigny 1853, pl. 340, fig. 9, 10. (8, 9) Trochotoma (T.) gradus Eudes-Deslongchamps; (8) from Eudes-Deslongchamps 1843, pl. 8, fig. 4–7; (9) from Eudes-Deslongchamps 1868, pl. 4, figs. 2a, b. (10) Trochotoma (T.) obtusa Morris and Lycett, from Morris and Lycett 1851, pl. 10, fig. 15b. (11) Trochotoma (T.) rathieriana (d’Orbigny), from d’Orbigny 1853, pl. 342, figs. 7, 8. (12) Trochotoma (T.) tabulata Morris and Lycett, from Morris and Lycett 1851, pl. 10, fig. 17a. (13) Trochotoma (T.) schlumbergeri Eudes-Deslongchamps, from Eudes-Deslongchamps 1868, pl. 8, fig. 5a, b. (14) Trochotoma (T.) orientalis (Kiparisova), from Kiparisova 1952, pl. 6, figs. 1a, c Scale bars=5 mm.

Supplementary material: PDF

Ferrari et al. supplementary material

Ferrari et al. supplementary material

Download Ferrari et al. supplementary material(PDF)
PDF 637.8 KB