Hostname: page-component-7b9c58cd5d-g9frx Total loading time: 0 Render date: 2025-03-15T14:33:42.673Z Has data issue: false hasContentIssue false

High Accuracy Pseudolite-based Navigation System: Compensating for Right-Hand Circularly Polarized Effect

Published online by Cambridge University Press:  06 April 2006

Haeyoung Jun
Affiliation:
Seoul National University, Republic of Korea. Email: hyjun@snu.ac.kr, kee@snu.ac.kr
Changdon Kee
Affiliation:
Seoul National University, Republic of Korea. Email: hyjun@snu.ac.kr, kee@snu.ac.kr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents further research on the SNUGL pseudolite-based navigation system presented in this journal in 2003. This system has centimetre-level accuracy, but has an error source arising from right-hand circularly polarized (RHCP) transmissions, unlike outdoor Global Positioning System (GPS). The GPS satellites and pseudolites use RHCP signals, and the polarization affects carrier-phase measurements according to the Line-of-Sight (LOS) vectors from transmitters to receivers. The RHCP error is eliminated by a double differencing process in outdoor GPS, but the error remains in the pseudolite-based system because the LOS vectors from transmitters to a reference and user receivers are different for the close transmitter constellations. This paper shows the RHCP effect on the pseudolite-based navigation system through simulations and experiments. It then shows the RHCP-compensation method improves the measurement and position accuracy by over 10%.

Type
Research Article
Copyright
2006 The Royal Institute of Navigation