Article contents
Wave patterns in plane Poiseuille flow created by concentrated disturbances
Published online by Cambridge University Press: 26 April 2006
Abstract
A model is constructed for perturbations created in the surrounding laminar flow by a turbulent spot in plane Poiseuille flow. The turbulent spot is represented as a distribution of increased Reynolds stress, which travels steadily through the surrounding laminar flow. The Navier-Stokes equations are linearized and are solved by using Fourier transforms in the plane parallel to the channel walls and a finite-difference method in the direction perpendicular to the walls. The travelling Reynolds stress distribution acts as a forcing term in the equations.
Numerical results show that a packet of oblique waves are generated around the disturbance when the force is antisymmetric with respect to the channel centreline, whereas no identifiable wave crests are found when the forcing is symmetric. Furthermore, wavelengths of the typical waves composing the packet are insensitive to the size of the region of Reynolds stress. The dependencies of the flow field on Reynolds number and spot speed are investigated. In the case of symmetric forcing, the flow is forced around the disturbance, causing distortions to the basic velocity profiles. These results are in qualitative agreement with experimental observations.
- Type
- Research Article
- Information
- Copyright
- © 1989 Cambridge University Press
References
- 17
- Cited by