Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-02-07T06:53:24.972Z Has data issue: false hasContentIssue false

Turbulent Rayleigh–Bénard convection for a Prandtl number of 0.67

Published online by Cambridge University Press:  23 November 2009

GUENTER AHLERS*
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106, USA
EBERHARD BODENSCHATZ
Affiliation:
Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Goettingen, Germany
DENIS FUNFSCHILLING
Affiliation:
LSGC CNRS–GROUPE ENSIC, BP 451, 54001 Nancy Cedex, France
JAMES HOGG
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106, USA
*
Email address for correspondence: guenter@physics.ucsb.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For the Rayleigh-number range 107Ra ≲ 1011 we report measurements of the Nusselt number Nu and of properties of the large-scale circulation (LSC) for cylindrical samples of helium gas (Prandtl number Pr = 0.674) that have aspect ratio Γ ≡ D/L = 0.50 (D and L are the diameter and the height respectively) and are heated from below. The results for Nu are consistent with recent direct numerical simulations. We measured the amplitude δ of the azimuthal temperature variation induced by the LSC at the sidewall, and the LSC circulation-plane orientation θ0, at three vertical positions. For the entire Ra range the LSC involves a convection roll that is coherent over the height of the system. However, this structure frequently collapses completely at irregular time intervals and then reorganizes from the incoherent flow. At small δ the probability distribution p(δ) increases linearly from zero; for Γ = 1 and Pr = 4.38 this increase is exponential. No evidence of a two-roll structure, with one above the other, was observed. This differs from recent direct numerical simulations for Γ = 0.5 and Pr = 0.7, where a one-roll LSC was found to exist only for Ra ≲ 109 to 1010, and from measurements for Γ = 0.5 and Pr ≃ 5, where one- and two-roll structures were observed with transitions between them at random time intervals.

JFM classification

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

References

REFERENCES

Ahlers, G. 2000 Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh–Bénard convection. Phys. Rev. E 63, 015303.CrossRefGoogle ScholarPubMed
Ahlers, G., Brown, E. & Nikolaenko, A. 2006 The search for slow transients, and the effect of imperfect vertical alignment, in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 557, 347367.CrossRefGoogle Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503538.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2006 a Effect of the Earth's Coriolis force on turbulent Rayleigh–Bénard convection in the laboratory. Phys. Fluids 18, 125108-1–125108-15.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2006 b Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2007 Temperature gradients, and search for non-Boussinesq effects, in the interior of turbulent Rayleigh–Bénard convection. Europhys. Lett. 80, 14001-1–14001-6.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2008 A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20, 075101-1–075101-16.Google Scholar
Brown, E. & Ahlers, G. 2009 The origin of oscillations of the large-scale circulation of turbulent Rayleigh–Bénard convection. J. Fluid Mech. (in press).CrossRefGoogle Scholar
Brown, E., Funfschilling, D. & Ahlers, G. 2005 a Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.CrossRefGoogle ScholarPubMed
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 b Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.CrossRefGoogle ScholarPubMed
Brown, E., Nikolaenko, A., Funfschilling, D. & Ahlers, G. 2005 c Heat transport by turbulent Rayleigh–Bénard convection: effect of finite top- and bottom-plate conductivity. Phys. Fluids 17, 075108-1–075108-10.CrossRefGoogle Scholar
Chavanne, X., Chilla, F., Chabaud, B., Castaing, B. & Hebral, B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.CrossRefGoogle Scholar
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92, 194502.CrossRefGoogle Scholar
Funfschilling, D., Bodenschatz, E. & Ahlers, G. 2009 Search for the ‘ultimate state’ in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 014503.CrossRefGoogle Scholar
Funfschilling, D., Brown, E. & Ahlers, G. 2008 Torsional oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech 607, 119139.CrossRefGoogle Scholar
Krishnamurti, R. & Howard, L. N. 1981 Large scale flow generation in turbulent convection. Proc. Natl Acad. Sci. 78, 19811985.CrossRefGoogle ScholarPubMed
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. (in press).Google Scholar
Malkus, M. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. London A 225, 196212.Google Scholar
Niemela, J. J., Skrebek, L., Sreenivasan, K. R. & Donnelly, R. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.CrossRefGoogle ScholarPubMed
Niemela, J. J. & Sreenivasan, K. R. 2006 The use of cryogenic helium for classical turbulence: promises and hurdles. J. Low Temp. Phys. 143, 163212.CrossRefGoogle Scholar
Roche, P., Castaing, B., Chabaud, B., Hebral, B. & Sommeria, J. 2001 sidewall effects in Rayleigh–Bénard experiments. Eur. Phys. J. 24, 405408.CrossRefGoogle Scholar
Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2009 Radial boundary-layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. (in press), ArXiv: 0905.0379.Google Scholar
Stringano, G. & Verzicco, R. 2006 Mean flow structure in thermal convection in a cylindrical cell of aspect-ratio one half. J. Fluid Mech. 548, 116.CrossRefGoogle Scholar
Sun, C., Xi, H. D. & Xia, K. Q. 2005 Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 95, 074502.CrossRefGoogle Scholar
Verzicco, R. 2004 Effect of non-perfect thermal sources in turbulent thermal convection. Phys. Fluids 16, 19651979.CrossRefGoogle Scholar
Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.CrossRefGoogle Scholar
Xi, H.-D. & Xia, K.-Q. 2007 Cessations and reversals of the large-scale circulation in turbulent thermal convection. Phys. Rev. E 75, 066307-1–066307-5.CrossRefGoogle ScholarPubMed
Xi, H.-D. & Xia, K.-Q. 2008 a Azimuthal motion, reorientation, cessation, and reversals of the large-scale circulation in turbulent thermal convection: a comparative study in aspect ratio one and one-half geometries. Phys. Rev. E 78, 036326-1–036326-11.CrossRefGoogle ScholarPubMed
Xi, H.-D. & Xia, K.-Q. 2008 b Flow mode transition in turbulent thermal convection. Phys. Fluids 20, 055104-1–055104-15.CrossRefGoogle Scholar
Zhong, J.-Q., Stevens, R., Clercx, H., Verzicco, R., Lohse, D. & Ahlers, G. 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 044502-1–044502-4.Google ScholarPubMed
Zhou, Q., Xi, H.-D., Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2009 Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J. Fluid Mech. 630, 367390.CrossRefGoogle Scholar