Article contents
Turbulent mixing in a pulsed plasma-jet exhaust
Published online by Cambridge University Press: 20 April 2006
Abstract
High-speed schlieren cinéphotography of the firing of a high-energy plasma-jet igniter reveal turbulent structures similar in appearance to laboratory models of thermals or turbulent puffs. Measurements of the growth rates of these features together with those of their impulse and thermal energy confirm this similarity. A simple model based on the entrainment assumption gives a good description of the motion of the element and also of the decay of the internal temperature.
- Type
- Research Article
- Information
- Copyright
- © 1984 Cambridge University Press
References
Carleton, F. B., Vince, I. M. & Weinberg, F. J.
1982
Energy and radical losses from plasma jet igniters to solid surfaces. In
Proc. 19th Symp. (Intl) on Combustion,
pp.
1523–1531.
Combustion Institute.
Cetegen, B., Teichman, K. Y., Weihberg, F. J. & Oppenheim, A. K.
1980
Performance of a plasma jet igniter.
SAE Paper 800042.Google Scholar
Clements, R. M., Smy, P. R & Dale, J. D.
1981
An experimental study of the ejection mechanism for typical plasma jet igniters.
Combust. Flame
42,
287–295.Google Scholar
Clements, R. M., Smy, P. R., Topham, D., Vince, I. M., Vovelle, C. & Weinberg, F. J.
1983
Chemical activity and transport processes in the vicinity of a plasma jet igniter.
Combust. Flame (submitted).Google Scholar
Escudier, M. P. & Maxworthy, T.
1973
On the motion of thermals.
J. Fluid Mech.
61,
541–552.Google Scholar
Grant, J. F., marram, E. P. & McIlwain, M. E.
1983
Optimization of plasma jet ignition properties: ignition of lean-quiescent mixtures of propane.
Combust. Sci. Tech.
30,
171–184.Google Scholar
Grigg, H. R. & Stewart, R. W.
1963
Turbulent diffusion in a stratified fluid.
J. Fluid Mech.
15,
174–186.Google Scholar
Hopkins, D. F. & Robertson, J. M.
1967
Two-dimensional incompressible fluid jet penetration.
J. Fluid Mech.
29,
273–287.Google Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S.
1956
Turbulent gravitational convection from maintained and instantaneous sources.
Proc. R. Soc. Lond. A
234,
1–23.Google Scholar
Oved, Y., Millinazzo, F., Clements, R. M. & Smy, P. R.
1979
Blast waves produced by a time-dependent energy source.
AIAA J.
17,
601–605.Google Scholar
Richards, J. M.
1965
Puff motions in unstratified surroundings.
J. Fluid Mech.
21,
97–106.Google Scholar
Scorer, R. S.
1978
Environmental Aerodynamics.
Wiley.
Smy, P. R., Clements, R. M., Simeoni, D. & Topham, D. R.
1982
Plasma expulsion from the plasma jet igniter.
J. Phys. D: Appl. Phys.
15,
2227–2239Google Scholar
Smy, P. R., Clements, R. M., Dale, J. D., Simeoni, D. & Topham, D. R.
1983
Efficiency and erosion characteristics of plasma jet igniters.
J. Phys. D: Appl. Phys.
16,
783–791.Google Scholar
Topham, D. R., Smy, P. R. & Clements, R. M.
1975
An investigation of a coaxial spark igniter with emphasis on its practical use.
Combust. Flame
25,
187–195.Google Scholar
Topham, D. R., Zhang, J. X., Clements, R. M. & Smy, P. R.
1982
Turbulent mixing induced by a high-energy ignition device.
J. Phys. D: Appl. Phys.
15,
L65–67.Google Scholar
Turner, J. S.
1964
The flow into an expanding spherical vortex.
J. Fluid Mech.
18,
195–208.Google Scholar
Turner, J. S.
1973
Buoyancy Effects in Fluids.
Cambridge University Press.
Zhang, J. X., Clements, R. M. & Smy, P. R.
1983
An experimental investigation of the effect of a plasma jet on a freely expanding methane—air flame.
Combust. Flame
50,
99–106.Google Scholar
- 13
- Cited by