Hostname: page-component-7b9c58cd5d-hpxsc Total loading time: 0 Render date: 2025-03-15T18:10:43.944Z Has data issue: false hasContentIssue false

Transition to turbulence at the bottom of a solitary wave

Published online by Cambridge University Press:  24 August 2012

Paolo Blondeaux*
Affiliation:
Department of Civil, Environmental and Architectural Engineering, Genoa University, via Montallegro 1, 16145 Genova, Italy
Jan Pralits
Affiliation:
Department of Civil, Environmental and Architectural Engineering, Genoa University, via Montallegro 1, 16145 Genova, Italy
Giovanna Vittori
Affiliation:
Department of Civil, Environmental and Architectural Engineering, Genoa University, via Montallegro 1, 16145 Genova, Italy
*
Email address for correspondence: blx@dicat.unige.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A linear stability analysis of the laminar flow in the boundary layer at the bottom of a solitary wave is made to determine the conditions leading to transition and the appearance of turbulence. The Reynolds number of the phenomenon is assumed to be large and a ‘momentary’ criterion of instability is used. The results show that the laminar regime becomes unstable during the decelerating phase, when the height of the solitary wave exceeds a threshold value which depends on the ratio between the boundary layer thickness and the local water depth. A comparison of the theoretical results with the experimental measurements of Sumer et al. (J. Fluid Mech., vol. 646, 2010, pp. 207–231) supports the analysis.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

References

1. Blondeaux, P. 1987 Turbulent boundary layer at the bottom of gravity waves. J. Hydraul. Res. 25 (4), 447464.CrossRefGoogle Scholar
2. Blondeaux, P. & Seminara, G. 1979 Transizione incipiente al fondo di un’onda di gravitá. Acc. Naz. Lincei 67, 408411 (italian).Google Scholar
3. Blondeaux, P. & Vittori, G. 1994 Wall imperfections as a triggering mechanism for Stokes-layer transition. J. Fluid Mech. 264, 107135.CrossRefGoogle Scholar
4. Blondeaux, P. & Vittori, G. 1999 Boundary layer and sediment dynamics under sea waves. Adv. Coast Ocean Engng 4, 133190.CrossRefGoogle Scholar
5. Blondeaux, P. & Vittori, G. 2012 RANS modelling of the turbulent boundary layer under a solitary wave. Coast. Engng 60, 110.CrossRefGoogle Scholar
6. Bogucki, D. J. & Redekopp, L. G 1999 A mechanism for sediment resuspension by internal solitary waves. Geophys. Res. Lett. 26 (9), 13171320.CrossRefGoogle Scholar
7. Conrad, P. W. & Criminale, W. O. 1965 The stability of time-dependent laminar flows. Z. Angew. Math. Phys. 16, 233254.CrossRefGoogle Scholar
8. Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 474, 133.CrossRefGoogle Scholar
9. Fredsoe, J. & Deigaard, R. 1992 Mechanics of Coastal Sediment Transport, Advanced Series on Ocean Engineering , vol. 3. World Scientific.CrossRefGoogle Scholar
10. Grimshaw, R. 1971 The solitary wave in water of variable depth. Part 2. J. Fluid Mech. 46 (3), 611622.CrossRefGoogle Scholar
11. Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
12. Liu, P. L. F. & Orfilia, A. 2004 Boundary layer hydrodynamics and bed load sediment transport in oscillating water tunnels. J. Fluid Mech. 520, 8392.CrossRefGoogle Scholar
13. Liu, P. L. F., Park, Y. S. & Cowen, E. A. 2007 Boundary layer flow and bed shear stress under a solitary wave. J. Fluid Mech. 574, 449463.CrossRefGoogle Scholar
14. Mazzuoli, M., Vittori, G. & Blondeaux, P. 2011 Turbulent spots in oscillatory boundary layers. J. Fluid Mech. 685, 365376.CrossRefGoogle Scholar
15. Mei, C. C. 1989 The Applied Dynamics of Ocean Surface Waves, Advanced Series on Ocean Engineering , vol. 1. World Scientific.Google Scholar
16. Shen, S. F. 1961 Some considerations on the laminar stability of incompressible time-dependent basic flows. J. Aerosp. Sci. 28, 397404 and 417.CrossRefGoogle Scholar
17. Sumer, B. M., Jensen, P. M., Sorensen, L. B., Fredsoe, J., Liu, P. L. F. & Carstensen, S. 2010 Coherent structures in wave boundary layers. Part 2. Solitary motion. J. Fluid Mech. 646, 207231.CrossRefGoogle Scholar
18. Tanaka, H., Sumer, B. M. & Lodahl, C. 1998 Theoretical and experimental investigation on laminar boundary layers under cnoidal wave motion. Coast. Engng J. 40 (1), 8198.CrossRefGoogle Scholar
19. Verzicco, R. & Vittori, G. 1996 Direct simulation of transition in Stokes layers. Phys. Fluids 8 (6), 13411343.CrossRefGoogle Scholar
20. Vittori, G. 2003 Sediment suspension due to waves. J. Geophys. Res. Oceans 108 (C6), 3173 4-1/4-17.CrossRefGoogle Scholar
21. Vittori, G. & Blondeaux, P. 2008 Turbulent boundary layer under a solitary wave. J. Fluid Mech. 615, 433443.CrossRefGoogle Scholar
22. Vittori, G. & Blondeaux, P. 2011 Characterstics of the boundary layer at the bottom of a solitary wave. Coast. Engng 58 (2), 206213.CrossRefGoogle Scholar
23. Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech. 371, 207232.CrossRefGoogle Scholar
24. Talmon, A. M., Struiksma, N. & Van Mierlo, M. C. L. M. 1995 Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes. J. Hydraul. Res. 33, 495517.CrossRefGoogle Scholar