Hostname: page-component-6bf8c574d5-rwnhh Total loading time: 0 Render date: 2025-02-23T14:14:08.764Z Has data issue: false hasContentIssue false

Thermal vibrational convection in near-critical fluids. Part 2. Weakly non-uniform heating

Published online by Cambridge University Press:  15 September 2006

D. LYUBIMOV
Affiliation:
Theoretical Physics Department, Perm State University, Perm, 614990, Russia
T. LYUBIMOVA
Affiliation:
Institute of Continuous Media Mechanics, Perm, 614013, Russia
A. VOROBEV
Affiliation:
Theoretical Physics Department, Perm State University, Perm, 614990, Russia Present address: The University of Michigan – Dearborn, Dearborn MI 48128, USA.
A. MOJTABI
Affiliation:
Institut de Mecanique des Fluides, Toulouse, 31062, France
B. ZAPPOLI
Affiliation:
Centre National d'Etudes Spatiales, Toulouse, 31055, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The governing equations and effective boundary conditions to describe thermal vibrational convection in a near-critical fluid are derived with the help of the multiple-scale method and averaging procedure. In contrast to Part 1, this paper focuses on the effects of density non-homogeneities caused not by external heating but by vibrational and gravity stratifications due to the divergent mechanical compressibility of near-critical media. It is shown that vibrations generate non-homogeneities in the average temperature, which result in the onset of thermal convection even under isothermal boundary conditions. An agreement with the results of previous numerical and asymptotical analyses and with experiments is found.

Type
Papers
Copyright
© 2006 Cambridge University Press