Hostname: page-component-6bf8c574d5-8gtf8 Total loading time: 0 Render date: 2025-02-23T21:50:43.642Z Has data issue: false hasContentIssue false

Subcritical transition in channel flows

Published online by Cambridge University Press:  30 January 2002

S. JONATHAN CHAPMAN
Affiliation:
OCIAM, Mathematical Institute, 24-29 St. Giles’, Oxford OX1 3LB, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Certain laminar flows are known to be linearly stable at all Reynolds numbers, R, although in practice they always become turbulent for sufficiently large R. Other flows typically become turbulent well before the critical Reynolds number of linear instability. One resolution of these paradoxes is that the domain of attraction for the laminar state shrinks for large R (as Rγ say, with γ < 0), so that small but finite perturbations lead to transition. Trefethen et al. (1993) conjectured that in fact γ <−1. Subsequent numerical experiments by Lundbladh, Henningson & Reddy (1994) indicated that for streamwise initial perturbations γ =−1 and −7/4 for plane Couette and plane Poiseuille flow respectively (using subcritical Reynolds numbers for plane Poiseuille flow), while for oblique initial perturbations γ =−5/4 and −7/4 Here, through a formal asymptotic analysis of the Navier–Stokes equations, it is found that for streamwise initial perturbations γ =−1 and −3/2 for plane Couette and plane Poiseuille flow respectively (factoring out the unstable modes for plane Poiseuille flow), while for oblique initial perturbations γ =−1 and −5/4. Furthermore it is shown why the numerically determined threshold exponents are not the true asymptotic values.

Type
Research Article
Copyright
© 2002 Cambridge University Press