Hostname: page-component-6bf8c574d5-9nwgx Total loading time: 0 Render date: 2025-02-23T12:08:00.307Z Has data issue: false hasContentIssue false

Self-propulsion in a viscous fluid: arbitrary surface deformations

Published online by Cambridge University Press:  27 February 2006

EHUD YARIV
Affiliation:
Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The self-propulsion of a generally deformable body at low-Reynolds-number conditions is discussed. The translational and rotational velocities of the body relative to an inertial reference system are presented as surface quadratures using a Lagrangian ‘body-fixed’ shape description. The power dissipated into the fluid is obtained as a quadratic functional of the surface deformation rate. For symmetric strokes, the net displacement obtained by the execution of a single deformation cycle is provided by a functional of the intrinsic swimmer shape and its time derivative.

Type
Papers
Copyright
© 2006 Cambridge University Press