Article contents
On steady Stokes flow in a trihedral rectangular corner
Published online by Cambridge University Press: 10 March 2003
Abstract
Motivated by the recent paper of Hills & Moffatt (2000), we investigate the Stokes flow in a trihedral corner formed by three mutually orthogonal planes, induced by a non-zero velocity distribution over one of the walls of the corner. It is shown that the local behaviour of the velocity field near the edges of the corner, where a discontinuity of the boundary velocity is assumed, coincides with the Goodier–Taylor solution for a two-dimensional wedge. Analysis of the streamline patterns confirms the existence of eddies near the stationary edge in the flow, induced either by uniform translation of one of the walls of the corner in the direction perpendicular to its bisectrix or by uniform rotation of a side about the vertex of the corner. These flows are shown to be quasi-two-dimensional. If the wall rotates about a centre displaced from the vertex, the induced flow is essentially three-dimensional. In the antisymmetric velocity field, a stagnation line appears composed of stagnation points of different types. Otherwise the three-dimensionality manifests itself in a non-closed spiral shape of the streamlines.
- Type
- Research Article
- Information
- Copyright
- © 2003 Cambridge University Press
- 14
- Cited by