Hostname: page-component-7b9c58cd5d-9k27k Total loading time: 0 Render date: 2025-03-15T06:53:10.817Z Has data issue: false hasContentIssue false

Nonlinear disturbance growth during sedimentation in dilute fibre suspensions

Published online by Cambridge University Press:  19 February 2013

Feng Zhang
Affiliation:
Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology, Stockholm S-100 44, Sweden
Anders A. Dahlkild*
Affiliation:
Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology, Stockholm S-100 44, Sweden
Fredrik Lundell
Affiliation:
Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology, Stockholm S-100 44, Sweden Wallenberg Wood Science Centre, KTH Mechanics, Royal Institute of Technology, Stockholm S-100 44, Sweden
*
Email address for correspondence: ad@mech.kth.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Disturbances in a dilute fibre suspension are studied with an Eulerian approach. Based on a linear stability analysis, it is shown that inertia and hydrodynamic diffusion damp perturbations at long wavelengths and short wavelengths, respectively, leading to a wavenumber selection. For small but finite Reynolds number of the fluid bulk motion, the most unstable wavenumber is a finite value, which increases with Reynolds number. Furthermore, the diffusion narrows the range of unstable wavenumbers. Numerical simulations of the full nonlinear evolution in time of a normal-mode perturbation show that the induced flow may either die out or saturate on a finite amplitude. The character of this long-time behaviour is dictated by the wavenumber and the presence or absence, as well as nature, of the translational and rotational diffusivities.

Type
Papers
Copyright
©2013 Cambridge University Press

References

Butler, J. E. & Shaqfeh, E. S. G. 2002 Dynamic simulations of the inhomogeneous sedimentation of rigid fibres. J. Fluid Mech. 468, 205237.Google Scholar
Dahlkild, A. 2011 Finite wavelength selection for the linear instability of a suspension of settling spheroids. J. Fluid Mech. 689, 183202.Google Scholar
Davis, R. H. 1996 Hydrodynamic diffusion of suspended particles: a symposium. J. Fluid Mech. 310, 325335.CrossRefGoogle Scholar
Folgar, F. & Tucker, C. L. 1984 Orientation behaviour of fibres in concentrated suspensions. J. Reinf. Plast. Composites 3 (2), 98119.Google Scholar
Gustavsson, K. & Tornberg, A.-K. 2009 Gravity induced sedimentation of slender fibres. Phys. Fluids 21, 123301.Google Scholar
Herzhaft, B. & Guazzelli, É. 1999 Experimental study of the sedimentation of dilute and semi-dilute suspensions of fibres. J. Fluid Mech. 384, 133158.Google Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Khayat, R. E. & Cox, R. G. 1989 Inertia effects on the motion of long slender bodies. J. Fluid Mech. 209, 435462.Google Scholar
Koch, D. L. 1995 A model for orientational diffusion in fibre suspensions. Phys. Fluids 7 (8), 20862088.CrossRefGoogle Scholar
Koch, D. L. & Shaqfeh, E. S. G. 1989 The instability of a dispersion of sedimenting spheroids. J. Fluid Mech. 209, 521542.CrossRefGoogle Scholar
Kuusela, E., Lahtinen, J. M. & Ala-Nissila, T. 2003 Collective effects in settling of spheroids under steady-state sedimentation. Phys. Rev. Lett. 90 (9), 094502.Google Scholar
Mackaplow, M. B. & Shaqfeh, E. S. G. 1998 A numerical study of the sedimentation of fibre suspensions. J. Fluid Mech. 376, 149182.Google Scholar
Metzger, B., Butler, J. E. & Guazzelli, É. 2007a Experimental investigation of the instability of a sedimenting suspension of fibres. J. Fluid Mech. 575, 307332.Google Scholar
Metzger, B., Butler, J. E. & Guazzelli, É. 2007b On wavelength selection by stratification in the instability of settling fibres. Phys. Fluids 19, 098105.Google Scholar
Phelps, J. H., Charles, L. & Tucker, C. L. 2009 An anisotropic rotary diffusion model for fibre orientation in short and long fibre thermoplastics. J. Non-Newtonian Fluid Mech. 156 (3), 165176.Google Scholar
Rahnama, M., Koch, D. L. & Cohen, C. 1995a Observations of fibre orientation in suspensions subjected to planar extensional flows. Phys. Fluids 7 (8), 18111817.Google Scholar
Rahnama, M., Koch, D. L. & Shaqfeh, E. S. G. 1995b The effect of hydrodynamic interactions on the orientation distribution in a fibre suspension subject to simple shear flow. Phys. Fluids 7 (3), 487506.CrossRefGoogle Scholar
Ranganathan, S. & Advani, S. G. 1991 Fiber-fibre interactions in homogeneous flows of nondilute suspensions. J. Rheol. 35 (8), 14991522.Google Scholar
Saintillan, D., Darve, E. & Shaqfeh, E. S. G. 2005 A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: the sedimentation of fibres. Phys. Fluids 17 (3), 033301.Google Scholar
Saintillan, D, Shaqfeh, E. S. G. & Darve, E 2006a The effect of stratification on the wavenumber selection in the instability of sedimenting spheroids. Phys. Fluids 18 (12), 121503.Google Scholar
Saintillan, D., Shaqfeh, E. S. G. & Darve, E. 2006b The growth of concentration fluctuations in dilute dispersions of orientable and deformable particles under sedimentation. J. Fluid Mech. 553, 347388.Google Scholar
Salmela, J., Martinez, D. M. & Kataja, M. 2007 Settling of dilute and semidilute fibre suspensions at finite Re. AIChE J. 53 (8), 19161923.CrossRefGoogle Scholar
Shin, M., Koch, D. L. & Subramanian, G. 2006 A pseudospectral method to evaluate the fluid velocity produced by an array of translating slender fibres. Phys. Fluids 18 (6), 063301.Google Scholar
Shin, M., Koch, D. L. & Subramanian, G. 2009 Structure and dynamics of dilute suspensions of finite-Reynolds-number settling fibres. Phys. Fluids 21 (12), 123304.Google Scholar
Subramanian, G. & Koch, D. L. 2005 Inertial effects on fibre motion in simple shear flow. J. Fluid Mech. 535, 383414.Google Scholar
Tornberg, A.-K. & Gustavsson, K. 2006 A numerical method for simulations of rigid fibre suspensions. J. Comput. Phys. 215 (1), 172196.Google Scholar

Zhang et al. supplementary movie

Time evolution of Ψ only with translational diffusion.

Download Zhang et al. supplementary movie(Video)
Video 5.5 MB