Hostname: page-component-6bf8c574d5-7jkgd Total loading time: 0 Render date: 2025-02-23T14:51:08.941Z Has data issue: false hasContentIssue false

Free-surface thin-film flows over topography: influence of inertia and viscoelasticity

Published online by Cambridge University Press:  26 April 2007

SERGEY SAPRYKIN
Affiliation:
Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
RUDY J. KOOPMANS
Affiliation:
Core R&D, Dow Benelux BV, 4530 AA Terneuzen, The Netherlands
SERAFIM KALLIADASIS*
Affiliation:
Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
*
Author to whom correspondence should be addressed: S.Kalliadasis@imperial.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider viscoelastic flows over topography in the presence of inertia. Such flows are modelled by an integral-boundary-layer approximation of the equations of motion and wall/free-surface boundary conditions. Steady states for flows over a step-down in topography are characterized by a capillary ridge immediately before the entrance to the step. A similar capillary ridge has also been observed for non-inertial Newtonian flows over topography. The height of the ridge is found to be a monotonically decreasing function of the Deborah number. Further, we examine the interaction between capillary ridges and excited non-equilibrium inertia/viscoelasticity-driven solitary pulses. We demonstrate that ridges have a profound influence on the drainage dynamics of such pulses: they accelerate the drainage process so that once the pulses pass the topographical feature they become equilibrium ones and are no longer excited.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

References

REFRENCES

Argyriadi, K., Vlachogiannis, M. & Bontozoglou, V. 2006 Experimental study of inclined film flow along periodic corrugations: the effect of wall steepness. Phys. Fluids 18, 012102.CrossRefGoogle Scholar
Bielarz, C. & Kalliadasis, S. 2003 Time-dependent free-surface thin film flows over topography. Phys. Fluids 15, 25122524.CrossRefGoogle Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics. Wiley.Google Scholar
Chang, H.-C. 1994 Wave evolution on a falling film. Annu. Rev. Fluid Mech. 26, 103136.CrossRefGoogle Scholar
Chang, H.-C. & Demekhin, E. A. 2002 Complex Wave Dynamics on Thin Films. Elsevier.Google Scholar
Chang, H.-C., Demekhin, E. A. & Kalaidin, E. 1998 Generation and suppression of radiation by solitary pulses. SIAM J. Appl. Maths 58, 12461277.Google Scholar
Chang, H.-C., Demekhin, E. A. & Saprykin, S. 2002 Noise-driven wave transitions on a vertically falling film. J. Fluid Mech. 462, 255283.CrossRefGoogle Scholar
Davis, J. M. & Troian, S. M. 2005 Generalized linear stability of noninertial coating flows over topographical features. Phys. Fluids 17, 072103.CrossRefGoogle Scholar
Fernandez-Parent, C. Lammers, J. H. & Decré, M. M. J. 1998 Flow of a gravity driven thin liquid film over one-dimensional topographies. Philips Res. Unclassified Rep. UR 823/98.Google Scholar
Fraysse, N. & Homsy, G. M. 1994 An experimental study of rivulet instabilities in centrifugal spin coating of viscous Newtonian and non-Newtonian fluids. Phys. Fluids 6, 14911504.CrossRefGoogle Scholar
Gramlich, C. M. Kalliadasis, S. Homsy, G. M. & Messer, C. 2002 Optimal levelling of flow over one-dimensional topography by Marangoni stresses. Phys. Fluids 14, 18411850.CrossRefGoogle Scholar
Kalliadasis, S. & Homsy, G. M. 2001 Stability of free-surface thin-film flows over topography. J. Fluid Mech. 448, 387410.CrossRefGoogle Scholar
Kalliadasis, S., Bielarz, C. & Homsy, G. M. 2000 Steady free-surface thin film flows over topography. Phys. Fluids 12, 18891898.CrossRefGoogle Scholar
Kalliadasis, S., Kiyashko, A. & Demekhin, E. A. 2003 a Marangoni instability of a thin liquid film heated from below by a local heat source. J. Fluid Mech. 475, 377408.CrossRefGoogle Scholar
Kalliadasis, S., Demekhin, E. A., Ruyer-Quil, C. & Velarde, M. G. 2003 b Thermocapillary instability and wave formation on a film falling down a uniformly heated plane. J. Fluid Mech. 492, 303338.CrossRefGoogle Scholar
Kapitza, P. L. 1948 Wave flow of thin layers of a viscous fluid. I. Free flow. Sov. Phys., J. Exp. Theor. Phys. 18, 318.Google Scholar
Khayat, R. E. 2000 Transient two-dimensional coating flow of a viscoelastic fluid film on a substrate of arbitrary shape. J. Non-Newtonian Fluid Mech. 95, 199233.CrossRefGoogle Scholar
Mazouchi, A. & Homsy, G. M. 2001 Free surface Stokes flow over topography. Phys. Fluids 13, 27512761.CrossRefGoogle Scholar
Messé, S. & Decré, M. J. 1997 Experimental study of a gravity driven water film flowing down inclined plates with different patterns. Philips Res. Uncliasified Rep. UR 030/97.Google Scholar
Oron, A. & Gottlieb, O. 2002 Nonlinear dynamics of temporally excited falling liquid films. Phys. Fluids 14, 26222636.CrossRefGoogle Scholar
Pumir, A., Manneville, P. & Pomeau, Y. 1983 On solitary waves running down an inclined plane. J. Fluid Mech. 135, 2750.CrossRefGoogle Scholar
Rosenau, P., Oron, A. & Hyman, J. M. 1992 Bounded and unbounded patters of the Benney equation. Phys. Fluids A 4, 11021104.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357369.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results of the modeling of flows down inclined planes by weighted residual approximations. Phys. Fluids 14, 170183.CrossRefGoogle Scholar
Ruyer-Quil, C. Scheid, B. Kalliadasis, S. Velarde, M. G. & Zeytounian, R. Kh. 2005 Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation. J. Fluid Mech. 538, 199222.CrossRefGoogle Scholar
Scheid, B., Ruyer-Quil, C. Thiele, U. Kabov, O. A. Legros, J. C. & Colinet, P. 2004 Validity domain of the Benney equation including Marangoni effect for closed and open flows. J. Fluid Mech. 527, 303335.CrossRefGoogle Scholar
Scheid, B. Ruyer-Quil, C. Kalliadasis, S. Velarde, M. G. & Zeytounian, R. Kh. 2005 Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves. J. Fluid Mech. 538, 223244.CrossRefGoogle Scholar
Shkadov, V. Ya 1967 Wave models in the flow of a thin layer of a viscous liquid under the action of gravity. Izv. Akad. Nauk SSSR, Mekh. Zhid. i Gaza 1, 4350.Google Scholar
Shkadov, V. Ya 1968 Theory of wave flow of a thin layer of a viscous liquid. Izv. Akad. Nauk SSSR, Mekh. Zhid. i Gaza 2, 2025.Google Scholar
Spaid, M. A. & Homsy, G. M. 1994 Viscoleastic free surface flows: spin coating and dynamic contact lines. J. Non-Newtonian Fluid Mech. 55, 249281.CrossRefGoogle Scholar
Spaid, M. A. & Homsy, G. M. 1996 Stability of Newtonian and viscoelastic dynamic contact lines. Phys. Fluids 8, 460478.CrossRefGoogle Scholar
Stillwagon, L. E. & Larson, R. G. 1988 Fundamentals of topographic substrate leveling. J. Appl. Phys. 63, 52515258.CrossRefGoogle Scholar
Stillwagon, L. E. & Larson, R. G. 1990 Leveling of thin films over uneven substrate during spin coating. Phys. Fluids 2, 19371944.CrossRefGoogle Scholar
Zhang, Y. L., Matar, O. K. & Craster, R. V. 2002 Surfactant spreading on a thin weakly viscoelastic film. J. Non-Newtonian Fluid Mech. 105, 5378.CrossRefGoogle Scholar