Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-10T05:59:16.467Z Has data issue: false hasContentIssue false

Controlled oscillations of a cylinder: forces and wake modes

Published online by Cambridge University Press:  17 August 2005

J. CARBERRY
Affiliation:
Department of Mechanical Engineering, Monash University 3800, Australia
J. SHERIDAN
Affiliation:
Department of Mechanical Engineering, Monash University 3800, Australia
D. ROCKWELL
Affiliation:
Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The wake states from a circular cylinder undergoing controlled sinusoidal oscillation transverse to the free stream are examined. As the frequency of oscillation passes through the natural Kármán frequency there is a transition between two distinctly different wake states: the low- and high-frequency states. The transition corresponds to a change in the structure of the near wake and is also characterized by a jump in the phase and amplitude of both the total and vortex lift. Over the range of flow and oscillation parameters studied the wake states exhibit a number of universal features. The phases of the vortex lift and drag forces have characteristic values for the low- and high-frequency states, which appear to be directly related to the phase of vortex shedding. A split force concept is employed, whereby instantaneous force traces and images allow discrimination between the actual loading and the physics, and their conventional time-averaged representations. The wake states for the forced oscillations show some remarkable similarities to the response branches of elastically mounted cylinders. The equivalence between forced and self-excited oscillations is addressed in detail using concepts of energy transfer.

Type
Papers
Copyright
© 2005 Cambridge University Press