Hostname: page-component-6bf8c574d5-vmclg Total loading time: 0 Render date: 2025-02-23T07:50:51.318Z Has data issue: false hasContentIssue false

Attenuation of sound in concentrated suspensions: theory and experiments

Published online by Cambridge University Press:  22 June 2001

PETER D. M. SPELT
Affiliation:
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse, NY 13244, USA Present address: Centre for Composite Materials, Imperial College, Prince Consort Road, London SW7 2BY, UK.
MICHAEL A. NORATO
Affiliation:
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse, NY 13244, USA
ASHOK S. SANGANI
Affiliation:
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse, NY 13244, USA
MARGARET S. GREENWOOD
Affiliation:
Pacific Northwest National Laboratory, Battelle Memorial Institute, Richland, WA 99352, USA
LAWRENCE L. TAVLARIDES
Affiliation:
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse, NY 13244, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ensemble-averaged equations are derived for small-amplitude acoustic wave propagation through non-dilute suspensions. The equations are closed by introducing effective properties of the suspension such as the compressibility, density, viscoelasticity, heat capacity, and conductivity. These effective properties are estimated as a function of frequency, particle volume fraction, and physical properties of the individual phases using a self-consistent, effective-medium approximation. The theory is shown to be in excellent agreement with various rigorous analytical results accounting for multiparticle interactions. The theory is also shown to agree well with the experimental data on concentrated suspensions of small polystyrene particles in water obtained by Allegra & Hawley and for glass particles in water obtained in the present study.

Type
Research Article
Copyright
© 2001 Cambridge University Press