Article contents
Spatial stability of the non-parallel Bickley jet
Published online by Cambridge University Press: 20 April 2006
Abstract
The spatial stability of the plane, two-dimensional jet flow to infinitesimal disturbances is investigated by taking into account the effects of transverse velocity component and the streamwise variations of the basic flow and of the disturbance amplitude, wave-number and spatial growth rate. This renders the growth rate dependent on the flow variable as well as on the transverse and streamwise co-ordinates. Growth rates for the energy density of the disturbance and the associated neutral curves are provided as a function of the streamwise co-ordinate. Variation of growth rate of the disturbance stream function and streamwise component of velocity with the transverse co-ordinate is also given for different disturbance frequencies and streamwise locations. Results are compared with those for the parallel-flow stability analysis, and also with those for an analysis that accounts for only some of the non-parallel effects. It is found that the critical Reynolds number based on the growth of energy density of the disturbance depends on the streamwise co-ordinate and lies within the range (around 20) found experimentally, while the parallel-flow theory yields a rather low value of 4·0.
- Type
- Research Article
- Information
- Copyright
- © 1981 Cambridge University Press
References
- 15
- Cited by