Article contents
Initial-value problems for Rossby waves in a shear flow with critical level
Published online by Cambridge University Press: 20 April 2006
Abstract
The time-dependent evolution of sheared Rossby waves starting from an initial disturbance is studied for the simple case in which the shear is uniform. The uniform-shear assumption allows explicit solutions to be obtained which are useful in addressing the issue of the long-time asymptotic approach to normal modes and in assessing the relative importance of viscosity, nonlinearity and time-dependence in the evolution of Rossby waves in the presence of critical layers.
- Type
- Research Article
- Information
- Copyright
- © 1983 Cambridge University Press
References
Béland, M.
1976
Numerical study of the nonlinear Rossby wave critical level development in a barotropic zonal flow
J. Atoms. Sci.
33,
2066–2078.Google Scholar
Benney, D. J. & Bergeron, R. G.
1969
A new class of nonlinear waves in parallel flows
Stud. Appl. Maths
48,
181–204.Google Scholar
Booker, J. R. & Bretherton, F. P.
1967
The critical layer for internal gravity waves in a shear flow
J. Fluid Mech.
27,
513–539.Google Scholar
Bretherton, F. P.
1966
The propagation of groups of internal gravity waves in a shear flow
Q. J. R. Met. Soc.
92,
466–480.Google Scholar
Bretherton, F. P. & Garrett, C. J. R.
1969
Wave trains in inhomogeneous moving media
Proc. R. Soc. Lond.
A302,
529–554.Google Scholar
Brown, S. N. & Stewartson, K.
1978
The evolution of the critical layer of a Rossby wave. Part II
Geophys. Astrophys. Fluid Dyn.
10,
1–24.Google Scholar
Dickinson, R. E.
1969
Planetary Rossby waves propagating vertically through weak westerly wind wave guides
J. Atmos. Sci.
25,
984–1002.Google Scholar
Dickinson, R. E.
1970
Development of a Rossby wave critical level
J. Atmos. Sci.
27,
627–633.Google Scholar
Farrell, B. F.
1981
Baroclinic instability as an initial value problem. Ph.D. thesis,
Harvard University.
Farrell, B. F.
1982
The initial growth of disturbances in a baroclinic flow
J. Atmos. Sci.
39,
1663–1686.Google Scholar
Fjørtoft, R.
1950
Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex
Geofis. Publ.
17, no. 5.Google Scholar
Gradshteyn, I. S. & Ryzhick, I. M.
1975
Table of Integrals, Series and Products.
Academic.
Hartman, R. J.
1973
The dynamics of infinite shear flows. Ph.D. thesis, University of California, Santa Barbara.
Hartman, R. J.
1975
Wave propagation in a stratified shear flow
J. Fluid Mech.
71,
89–104.Google Scholar
Lin, C. C.
1945
On the stability of two-dimensional parallel flows.
Q. Appl. Maths
3, 117–142,
218–234.Google Scholar
Lin, C. C.
1957
On uniformly valid asymptotic solutions of the Orr-Sommerfeld equation. In
Proc. 9th Intl Congress Appl. Mech., Brussels,
vol. 1,
pp.
136–148.Google Scholar
Lindzen, R. S. & Tung, K. K.
1978
Wave overreflection and shear instability
J. Atmos. Sci.
35,
1626–1632.Google Scholar
Lu, P.-S. & Zeng, Q.-C.
1981
On the evolution process of disturbances in the barotropic atmosphere
Sci. Atmos. Sinica
5,
1–8.Google Scholar
Marcus, P. S. & Press, W. H.
1977
On Green's functions for small disturbances of plane Couette flow
J. Fluid Mech.
79,
525–534.Google Scholar
Orr, W. M.
1907
The stability or instability of the steady motions of a liquid
Proc. R. Irish Acad.
A27,
69–138.Google Scholar
Pedlosky, J.
1964
An initial value problem in the theory of baroclinic instability
Tellus
16,
12–17.Google Scholar
Phillips, O. M.
1966
Dynamics of the Upper Ocean,
1st edn.
Cambridge University Press.
Rayleigh, J. W. S.
1880
On the stability, or instability, of certain fluid motions
Proc. Lond. Math. Soc.
9,
57–70.Google Scholar
Rosen, G.
1971
General solution for perturbed plane Couette flow
Phy. Fluids
14,
2767–2769.Google Scholar
Stewartson, K.
1978
The evolution of the critical layer of a Rossby wave
Geophys. Astrophys. Fluid Dyn.
9,
185–200.Google Scholar
Tung, K. K.
1979
A theory of stationary long waves. Part III: Quasi-normal modes in a singular waveguide.
Mon. Weather Rev.
107,
751–774.Google Scholar
Warn, T. & Warn, H.
1976
Development of a Rossby wave critical level
J. Atmos. Sci.
33,
2021–2024.Google Scholar
Warn, T. & Warn, H.
1978
The evolution of a nonlinear critical level
Stud. Appl. Maths
59,
37–71.Google Scholar
Yamagata, T.
1976a
On the propagation of Rossby waves in a weak shear flow.
J. Met. Soc. Japan
54,
126–128.Google Scholar
Yamagata, T.
1976
On trajectories of Rossby wave-packets released in a lateral shear flow
J. Oceanogr. Soc. Japan
32,
162–168.Google Scholar
- 46
- Cited by