Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-11T15:05:35.204Z Has data issue: false hasContentIssue false

Joint distribution of a Lévy process and its running supremum

Published online by Cambridge University Press:  26 July 2018

Laure Coutin*
Affiliation:
Université Paul Sabatier
Monique Pontier*
Affiliation:
Université Paul Sabatier
Waly Ngom*
Affiliation:
Université Paul Sabatier
*
* Postal address: Institut de Mathématiques de Toulouse, Université Paul Sabatier, 31062 Toulouse cedex, France.
* Postal address: Institut de Mathématiques de Toulouse, Université Paul Sabatier, 31062 Toulouse cedex, France.
* Postal address: Institut de Mathématiques de Toulouse, Université Paul Sabatier, 31062 Toulouse cedex, France.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a jump-diffusion process and X* its running supremum. In this paper we first show that for any t > 0, the law of the pair (X*t, Xt) has a density with respect to the Lebesgue measure. This allows us to show that for any t > 0, the law of the pair formed by the random variable Xt and the running supremum X*t of X at time t can be characterized as a weak solution of a partial differential equation concerning the distribution of the pair (X*t, Xt). Then we obtain an expression of the marginal density of X*t for all t > 0.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2018 

References

[1]Applebaum, D. (2009). Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press. Google Scholar
[2]Brezis, H. (1983). Analyse Fonctionnelle: Théorie et Applications. Masson, Paris. Google Scholar
[3]Carr, P. and Cousot, L. (2011). A PDE approach to jump-diffusions. Quant. Finance 11, 3352. Google Scholar
[4]Coutin, L. and Dorobantu, D. (2011). First passage time law for some Lévy processes with compound Poisson: existence of a density. Bernoulli 17, 11271135. Google Scholar
[5]Jeanblanc, M., Yor, M. and Chesney, M. (2009). Mathematical Methods for Financial Markets. Springer, London. Google Scholar
[6]Kou, S. G. and Wang, H. (2003). First passage times of a jump diffusion process. Adv. Appl. Prob. 35, 504531. Google Scholar
[7]Kuznetsov, A., Kyprianou, A. E. and Rivero, V. (2012). The Theory of Scale Functions for Spectrally Negative Lévy Processes (Lecture Notes Math. 2061). Springer, Heidelberg. Google Scholar
[8]Ngom, W. (2015). Conditional law of the hitting time for a Lévy process in incomplete observation. J. Math. Finance 5, 505524. Google Scholar
[9]Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin. Google Scholar
[10]Titchmarsh, E. C. (1939). The Theory of Functions, 2nd edn. Oxford University Press. Google Scholar
[11]Veillette, M. and Taqqu, M. S. (2010). Using differential equations to obtain joint moments of first-passage times of increasing Lévy processes. Statist. Prob. Lett. 80, 697705. Google Scholar